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Quaternary semiconductor alloys type-I are appropriated materials for heterostructure devices because they provide a natural form to tune the
magnitude of the band gap so that it can operate in the mid-infrared (mid-IR) wavelength range. However electron spin degree of freedom and
the electron spin splitting g-factor provide a new pathway to the development of a practical quantum communication systems, because the ef-
fective g-factor for electrons in III-V semiconductors vary as a function of the chemical concentration. We investigated theoretically electron
g-factor in bulk Ga1−xInxAsySb1−y matched to GaSb and the Zeeman effect as well as the Landau levels in GaSb/Ga1−xInxAsySb1−y/GaSb
spherical quantum dot heterostructure under the framework of Kane eight-band effective-mass model, in which the mixing of the states in the
lower conduction band and the highest valence bands is taken into account. Our calculations show that bulk electron g-factor values are in
the range between the electron g-factor measured in bulk GaSb whenx → 0 (g =-9.25) and that measured in InAs whenx → 1 (g =-18.08),
but there is a notable minimum in the g-factor value (g ≈ −23.14) at x ≈ 0 : 67. In GaSb/Ga1−xInxAsySb1−y/GaSb spherical quantum
dot our calculations show that the electron g-factor decreases as the radius increases reaching the value for the quaternary in bulk for a given
In concentration,x, and increases when the radius decreases, approaching to the value in the barrier material, whenR → 0. Also for higher
values of concentration of In, the g-factor as a function ofR moves to the g-factor bulk limit.

Keywords: g-factor; heterostructures; Zeeman effect; Landau levels.

Las aleaciones cuaternarias tipo-I son materiales apropiados para dispositivos de heteroestructura, porque proveen una forma natural de ajus-
tar la magnitud de la brecha de energı́a de modo que pueden operar en longitudes de onda en el rango del infrarrojo-medio (IR-m). Sin em-
bargo, los grados de libertad del spin y el desdoblamiento de los estados electrónicos de spin a causa del factorg, permiten nuevas rutas para
desarrollar sistemas prácticos de comunicación cúantica, lo anterior se debe a que el factor electrónico efectivogen semiconductores III-V
vaŕıa en funcíon de la concentración qúımica. Nosotros investigamos teóricamente el factor electrónicog en Ga1−xInxAsySb1−y sobre GaSb
para el material en bloque, el efecto Zeeman y niveles de Landau en puntos cuánticos esf́ericos de GaSb/Ga1−xInxAsySb1−y/GaSb bajo el
modelo de ocho bandas con masa efectiva de Kane, en el cual la interacción de estados entre el fondo de la banda de conducción y el tope de
la banda de valencia es considerado. Nuestros cálculos muestran que los valores del factor electrónicogpara el material en bloque se encuen-
tran en el rango entre el factorg medido en bloque de GaSb, cuandox → 0 (g = −9.25) y el valor medido en bloque de InAs cuandox → 1
(g =-18.08) con un notable ḿınimo del valor (g ≈ −23.14) enx ≈ 0.67. En el punto cúantico esf́erico GaSb/Ga1−xInxAsySb1−y/GaSb,
nuestros ćalculos muestran que el factor electrónicogdisminuye a medida que el radio aumenta, alcanzando el valor lı́mite para el cuaternario
en bloque, correspondiente a una concentración dada de In,x, y aumenta cuando el radio disminuye aproximándose al valor en el material
de la barrera cuandoR → 0. Adeḿas para valores altos de concentración de In el factorg como funcíon del radio se desplaza hacia el valor
del factorg del bloque ĺımite.

Descriptores: Factorg; hetereoestructuras; efecto Zeeman; niveles de Landau.

PACS: 75.70.Tj; 75.50.Pp.

1. Introduction

GaSb/Gax−1InxAsySb1−y/GaSb quaternary heterostructures
have interesting characteristics over ternary alloys in regards
to the possibility of tuning independently the energy band
gap and lattice constant by adjusting the indium (In) con-
centration0 ≤ x ≤ 1 within the constraints of GaSb sub-
strate, which covers the wavelength range from 1.7µm to
4.3 µm. There-fore, with the electron spin degree of free-
dom and the electron spin splittingg-factor in this semicon-
ductors is possible the development of a practical quantum
communication systems [1,2]. Type-I heterostructures can be
fabricated using strained Gax−1InxAsySb1−y alloys for the
quantum dot and GaSb for the barriers, depending on the al-
loy concentration [3]. The values of conduction band-offset,
band gap energy at a given point, spin-orbit splitting, Kane
coupling matrix element value between the states of the low-

est conduction band and the upper valence bands and elec-
tron g-factor in bulk are calculated by interpolation scheme.
Calculations at room temperature of the electron g-factor in
GaSb/Gax−1InxAsySb1−y/GaSb spherical quantum dots un-
der eight-band effective-mass model and the energy states in-
cluding the Zeeman effect on the electrons confined in qua-
ternary heterostructure quantum dots, with a parabolic con-
fining potential in the type-I band alignment as function of
the quantum dot radius are performed.

2. Theoretical framework

Bulk material parameters of a quaternary alloyQ(x, y) with
composition of the form Ga1−xInxAsySb1−y lattice matched
to GaSb can be estimated by interpolating scheme from the
binary alloys parametersCij [4] as
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Q(x, y)
2∑

i

2∑

j

Cijx
i−1y2−j(1− x)2−i(1− y)j−1, (1)

with lattice matched condition given by

y =
0.384

0.421 + 0.216(1− x)
(2)

In a external magnetic field the Hamiltonian of a sin-
gle electron in GaS/Ga1−xInxAsySb1−y/GaSb type-I spher-
ical quantum dot (SQD) system within the~k · ~p eight-band
effective-mass model is given by [5]

Ĥ(p̂, H) = Ĥ0(p̂) + µBH(D̂ + D̂1), (3)

whereĤ0(p̂) describes the electron states in zero magnetic
field andµBH(D̂+D̂1) describes the effects of external mag-
netic field, and are given by

Ĥ0(p̂)=



− 1

2m0
Û2p̂

2 i
∏

Û2p̂

−i
∏

Û2p̂
1
3∆so(Î σ̂)−(Eg+ 1

3∆so)Û2


 , (4)

D̂ =




1
2g0(σ̂n̂) 0

0 (Î n̂)Û2 + 1
2g0(σ̂n̂)


 , (5)

D̂1 =


 −L̂n̂ i

∏ m0
~ (n̂× ~r)

−i
∏ m0

~ (n̂× ~r) 0


 Û2, (6)

where p̂ = i~∇ is the momentum operator with
k̂ = (1/h)(p̂ + (e/c)A), A = (1/2)(H × ~r) is
the vector potential of the magnetic field,̂U2 is 2×2
unit matrix, σ̂ = (σx, σx, σx) are the pauli matrices,
Π = −i(1/m0)〈S|px|X〉 is the Kane matrix element cou-
pling between the s-antibonding conduction and p-bonding
valence-band states,n̂ = H/H is the unit vector in the mag-
netic field directionH, L̂ = (1/~)(~r × ~p) is the angular mo-
mentum operator,̂I = (Ix, Iy, Iz) is the vector operator and
g0 = +2, m0 are the free-electron mass and g-factor respec-
tively. The total zero-order wave function in the~k · ~p eight-
band effective-mass model can be pre sented as the expan-
sion [5,6]

Φ(r) =
∑

j

∑

v=±1/2

[Ψc
v(r) + Ψν

v(r)]φj,0Cv, (7)

hereφj,0 indicates the Bloch function atΓ point of the zinc
blende structure [6],Cv are the eigenfunctions of the spin
operatorŜ = (1/2)σ̂, Ψc

v(r) and Ψν
v are the components

of the envelope function for conduction-band and valence-
band respectively. Under external magnetic field the enve-
lope functionΨ(r) = {Ψc

v(r) + Ψν
v(r)} is the solution of the

Schr̈odinger equation

ĤΨ(r) = EΨ(r), (8)

where E is the energy measured from the bottom of
the bulk Gax−1InxAsySb1−y conduction band. Using

Ĥ0Ψ(r)=EΨ(r) one can expressΨν
v by means of the gra-

dient∇Ψc
v as

Ψν
v =

1
Π

{
− ~

2mt(E)
∇Ψc

v

+ i
~

4mo
[gt(E)− g0](σ̂ ×∇)

}
Ψc

v (9)

Using Eq. (9) one can be derived the bulk Schrödinger
equation describing the radial-component wave function
f(r) = Ψc

vCv in a SQD for one spin state as.

− ~2

2mt(E)
∇f(r) = Ef(r) (10)

where electronic mass and electron g-factor energy- depen-
dence,m0/mt(E) andgt(E) are taken as in Ref. 8. Taking
into account boundary conditions, the confinement potential
∆EC(x) and spherical symmetry considerations in a SQD,
the solution of Eq. (10) for the ground state levelE has the
form

f(r) =





A sin k1r
r r ≤ R

A sin k1R
r e−k2(r−R), r ≥ R,

(11)

whereA is the normalization constant of the radial envelope
wave function,R is the radius of the SQD andi = 1; 2 is
defined as

ki =





(
2mQE
~2

)
1/2, i = 1, r < R

(
2mB(∆EC(x)−E)

~2
)

1/2 i = 2, r > R
, (12)

wheremQ denote the electron effective mass in the quater-
nary alloy andmB denote the electron effective mass in the
binary GaSb semiconductor,∆EC(x)=0.6 (EgB − EgQ(x))
is the offset of the conduction band at the heterostructure and
EgQ(x) is given by Eq. (1), the ground state energiesE is
determined solving numerically Eq. (9). The g-factor for
GaSb/Gax−1InxAsySb1−y/GaSb heterostructure can be cal-
culated from the second therm withH-dependence in Eq. (3)
treated by first-order perturbation theory [5,9] with envelope
radial wave function Eq.(11) and taking into account spher-
ical symmetry and boundary conditions atr = R. Thus, in
spherical coordinates system we obtain electron the g-factor
as a function of bothx andR as

g(x, R) = g0 +
4
3
π[gB(E)− gQ(E)]

R

α0
A2 sin2 k1R

+ [gQ(E)− g0]IQ + [gB(E)− g0]IB , (13)

whereα0 = 1 nm is a scale factor,IQ, IB andA are given by

IQ = 4π

R∫

0

A2 sin2(k1r)dr

IB = 4π

∞∫

R

A2 sin2(k1R)e−2k2(r−R)dr, (14)

IQ = IB + Iv = 1 (15)

Rev. Mex. Fis. S58 (2) (2012) 147–150



GA1−X INXASY SB1−Y /GASB SPHERICAL QUANTUM DOT IN A MAGNETIC FIELD 149

whereIv is the valence-envelope wave function contribution
with becauseE ¿ EgQ. Thus, we obtainedg(x, R) for
GaSb/Ga1−xInxAsySb1−y/GaSb SQD semiconductor het-
erostructure using the parameters obtained by Eqs. (1). Con-
sidering the conductionΓ6 and valenceΓ7, Γ8 bans and ne-
glecting the higher bands the Hamiltonian Eq. (3) Laxet
al. [8] obtained the bulk energy of the n-th Landau level of the
conduction band in semiconductors III-V, showing that both
the effective mass and the g factor are greatly modified by
the band mixing with spin-orbit interaction effects and these
are considered in energy Landau levels. Here we proposed
a parabolic confining potential including the band mixing ef-
fects given by Eq. (13). Thus, when the magnetic field is
applied parallel to z-direction, the quantum dot potential in
the perpendicular plane is given by

V (r⊥) =
mQ(ε)

2
ω2

0r2
⊥ (16)

wheremQ(ε) is the energy-dependence mass for quaternary
alloy, is the confining frequency andr⊥ is the radius perpen-
dicular to z-direction. The Hamiltonian in the presence of
both magnetic field and confining potentialV (r⊥) within the
symmetric gaugeA = [−(1/2)Hy, (1/2)Hx, 0] can be writ-
ten

Ĥ =
p2

2mQ(ε)
+

1
2
~ωcLz

+
mQ(ε)

2

[(ωc

2

)2

+ ω2
0

]
r2
⊥, (17)

hereLz = xpy − yPx is the z-component of the angular
momentumL andωc = (eH/m) is the cyclotron frequency.
In cylindrical coordinate (ρ, φ, z) the Schr̈odinger equation
Ĥψ(ρ) = εψ(ρ) has solutions given by

ε(n, m) = (2n + |M | − 1)

[(
ωc~
2

)2

+ (ωs)2
]1/2

(
~ωc

2

)
M ± 1

2
µBgQ(ε), (18)

with

ψ(ρ) = Cei(Mφ+kzz)ρ|M |e−
ρ2

4l2 L
|M |
n+|M |

(
ρ2

2l2

)
, (19)

where

n = 1, 2, 3 . . . , M = 0,±1, 2, . . . , L
|M |
n+|M |

(
ρ2

2l2

)

is the associated Laguerre function,l = (~/eH)1/2 is the
magnetic length andµB = 9.274 × 10−24 JT−1 is the Bohr
magneton andωs = ~ω0 is the effective confining energy
defined as

ωs(x, R) =
~
R

(
2(∆EC(x)− E)

mQ

)1/2

(20)

FIGURE 1. (Color online)Bulk electron g-factor as a function ofx,
for Ga1−xInxAsySb1−y/GaSb quaternary alloys atT= 300 K.

3. Results and discussion

In this work, we show that the electron g-factor effects can
not be ignored neither if a magnetic field is applied exter-
nally to the bulk material, nor to a quaternary alloy SQD, be-
cause bulk electron g-factor values are in the range -9.25 to
-23.14. In Fig. 1 we display the variation of the bulk electron
g-factor as a function ofx. We observe that the bulk elec-
tron g-factor values fall in the range between the bulk elec-
tron g-factor measured for GaSb whenx → 0 (g ∼= −9.25)
and the bulk electron g-factor measured for InAs when
x→1 (g ∼= −17.5) but, there is a remarkable minimum at
(g ∼= −23.14) for x ∼= 0.67. Also, we see that forxin the
range0.5 ≤ x ≤ 0.83 the dependence of the electron g-factor
onx is approximately parabolic. Experimental or theoretical
bulk electron g-factor for Ga1−xInxAsySb1−y/GaSb qua-
ternary

FIGURE 2. (Color online) Variation of the electron g-factor as a
function of the radius in a GaSb/Ga1−xInxAsySb1−y/GaSb SQD
at T= 300 K. Lines 1 and 2 corresponds forx= 0.15 andx= 0.25
respectively.
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FIGURE 2. (Color online) Two Landau level splitting for the first
energy confined state in GaSb/Ga1−xInxAsySb1−y/GaSb SQD for
R= 10 nm at room temperature. Curves I corresponds tox= 0.15,
g = −10.9, ωs = 8 meV and Curves II corresponds tox= 0.25,
g = −11, ωs = 17 meV. Neglecting the electron g-factor effect,
full lines, and considering the electron g-factor effect dashed lines,
to spin dow (up) state,↓ (↑).

alloy is not readily available. Thus, we make a predic-
tion for bulk electron g-factor in quaternary alloygQ(x) at
T= 300 K based on the electron g-factor behavior of the
binaries III-V and the interpolation proposed in Eqs. (1)
and (2). Figure 2 displays the electron g-factor versus the
radius of the SQD at room temperature. We see that the elec-
tron g-factor reaches the bulk values as the radius increases,
g = −14 and g = −17 for x= 0.15 andx= 0.25 respec-
tively. As the radius decreases, the electron g-factor in a
GaSb/Ga1−xInxAsySb1−y/GaSb SQD increases, approach-
ing to g = −9 in the limit R → 0, that is, to the barrier ma-
terial g-factor value. Taking in mind that experimental and
theoretical electron g-factor for Ga1−xInxAsySb1−y quater-
nary alloys are not avail able, we thus make a prediction of
gQ(x,R) within the ~k · ~p eight-band effective-mass model
using the parameters calculated in this work by means of
Eqs. (1) and (2).

Figure 3 show two Landau levels splitting induced by
the application of the external magnetic field in the range
0 - 10 T for the first excited energy confined state in a
GaSb/Ga1−xInxAsySb1−y/GaSb SQD forR= 10 nm at room
temperature, curvesI corresponds tox= 0.15,g = −10.9,
ωs = 8 meV and CurvesII corresponds tox=0.25,g = −11,

ωs = 17 meV. We see that, as the magnetic field is in-
creased the corresponding energies augment. Also, one no-
tices that the difference between the energies corresponding
to spin up(↑) and spin dow(↓) states is very apparent, 8 meV
at H=10 T, for both type of curves,I and II , as well as for
higher values of the applied magnetic field.

4. Conclusions

We have developed an interpolation method to calculate bulk
electron g-factorg(x) at T= 300 K, using a eight-band
effective-mass model in order to calculate the electron g-
factor as a function of bothx and R and the Landau en-
ergy levels on the electrons confined in a SQD quaternary
alloy. Our predictions show that bulk electron g-factor val-
ues are in the range between the electron g-factor measured
in bulk GaSb whenx → 0 (g = −9.25) and that measured
in InAs whenx → 1, (g = −18.08), but there is a remark-
able minimum in the g-factor valueg ∼= 23.14 at x ∼= 0.67.
In a GaSb/Ga1−xInxAsySb1−y/GaSbSQD our calculations
show that the electron g-factor decreases as the radius in-
crease, reaching the value of the bulk quaternary material, for
a given value ofx, and increases when the radius decreases,
approaching to the value in the barrier material, that is, in
the limit R → 0. For x= 0:15 andωs = 8 meV we no-
tice that the energy levels increase with the applied magnetic
field. Also, we have found that the difference between the
energies corresponding to spin up(↑) and spin dow (↓) states
for both type of curves, I and II is notable, 8 meV atH= 10 T
as well as for higher values of the applied magnetic field. We
have found that the GaSb/Ga1−xInxAsySb1−y/GaSb quater-
nary alloy is an appropriate material for spintronic applica-
tions due to its large response under the action of the mag-
netic field,H <10 T, when compared with other III-V semi-
conductors. We hope that these theoretical results will moti-
vate experimental study that will confirm our predictions.
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