¥y ¥ ¥y

Revista Mexicana de Fisica

REVISTA
MEXICANA DE ISSN: 0035-001X
FISICA rmf@ciencias.unam.mx
Sociedad Mexicana de Fisica A.C.
México

Sierra-Porta, D.; Chirinos, M.; Stock, J.
Comparison of solutions to the Thomas-Fermi equation by a direct method and variational
calculus
Revista Mexicana de Fisica, vol. 63, nim. 4, julio-agosto, 2017, pp. 333-338
Sociedad Mexicana de Fisica A.C.
Distrito Federal, México

Available in: http://www.redalyc.org/articulo.oa?id=57050930005

How to cite € &\,_,/,\ J

Complete issue Scientific Information System

More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal
Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative


http://www.redalyc.org/revista.oa?id=570
http://www.redalyc.org/revista.oa?id=570
http://www.redalyc.org/articulo.oa?id=57050930005
http://www.redalyc.org/comocitar.oa?id=57050930005
http://www.redalyc.org/fasciculo.oa?id=570&numero=50930
http://www.redalyc.org/articulo.oa?id=57050930005
http://www.redalyc.org/revista.oa?id=570
http://www.redalyc.org

RESEARCH Revista Mexicana désica63 (2017) 333-338 JULY-AUGUST 2017

Comparison of solutions to the Thomas-Fermi equation
by a direct method and variational calculus

D. Sierra-Port&®, M. Chirinog, and J. Stock
@ Escuela de isica, Universidad Industrial de Santander,
Carrera 27 y Calle 9, 640002, Bucaramanga, Colombia.
b Centro de Modelado Cietfico (CMC) and Laboratorio de Astrondeny Fisica Térica,
(LAFT), Facultad Experimental de Ciencias, Universidad del Zulia, Maracaibo 4001, Venezuela.
e-mail: dsierrap@uis.edu.co

Received 28 February 2017; accepted 9 May 2017
In this paper we perform a comparison between two solutions of the Thomas-Fermi equation. One of these solutions is the one recently
found by Bougoffa (2014) which makes use of a direct method to solve the differential equation. The other solution found uses a variational
method. The first method uses approximations of the residual conditions after assuming a trial function, inspired by the Sommerfeld solution.

Our solution does not require approximations and we found that it reproduces more conveniently the corresponding numerical solution in
terms of relative error.
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1. Introduction the exclusion principle. Ip,,.x is the maximum value for the
electron momentum
8T 4
= — 1
n 3h3pmax? ( )

From the earliest days of quantum mechanics, it has been ) )
clear that one could not hope to solve most of the physicallyVheren is the number of electrons per unit volume. The po-
interesting systems exactly, especially those with more part€ntial energy is-¢V/, and it is confined in a neutral atom if
ticles. Thus, by 1930 (only three years after the first workdtS €N€rgy is non-positive.e.

of Thomas [1] and Fermi [2], and five years after the advent P>

of the "new” quantum theory), a large variety of approximate om ev. @

methods had been developed to construct approximate angsing the expression (2) into (1), we can express the electron
lytical solutions for nonlinear differential equations. There charge density in terms of the potentia)
has been a great deal of work on rigorous mathematical prob- 3
lems in quantum theory, most of it on the fundamentals and (r) = —en = 1 2meV
relevant operator theory. pAr) = —en =" K2 ‘
The Thomas-Fermi equation is a nonlinear ordinary dif-"\jow the eIIe(t:t:jon!c t;haFr)g(_a densng(r)t_ an.d the potential
ferential equation for modeling electrons of an atom. In par- (r) are related via the Poisson equation:
ticular, the Thomas-Fermi model is widely used in nuclear V2V (r) + 4mp(r) = 0, (4)
physics, for example, to answer questions related to nuclear Taking into account the solution of (4), the boundary
matter in neutron stars [3]. In spite of its generality, the ap- " ’

N . . conditions are such that(r) tends toZe/r whenr — 0
plication of the Thomas-Fermi method is based on the solu- ) .
. i : . . (Coulomb field), and/(r) tends to zero when tends to in-
tion u(z) of the second-order nonlinear differential equation

S : finity.
whichiis difficult to determine. The Thomas-Fermi equation in its usual form is presented

ewhen performing a change of variable

®)

The purpose of this model is give a expression for th
electron density(r), and of course, the electrostatic poten- r eZu(r) or2 \ /3
tial between the nucleus and the cloud of electrons at a dis- ¥ = > Vi(r) = ., 0 4T (1282) , ()
tancer for this. This central potential’(r) dominates the
interaction of electrons obeying Fermi-Dirac statistics in awhere )
volume region considered to be large enough so ¥hat) ap = h
does not vary appreciably over the size of the region. In this 4m2m.e?
case the electrons move freely. Under these conditions, the the first Bohr radius of the hydrogen atom, at a distance
electron kinetic energy is a minimum, and the electrons arérom the nucleusin. ande are the mass and charge of elec-
packed in phase space as densely as possible consistent witan.

= 5.2917721092.10~ " m ~ 0.53 A,
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This change is also convenient because it eliminates all Oulne [16], proposed a trial function which depends on
numerical constants in Eq. (4) leading to an universal nonthree parameters, 3 and~:
linear second-order ordinary differential equation which de- _ A JT\2,—208/F
scribes all atoms without distinguishing their composition uo(z) = (1+ av/e + fze )e ’ (14)
or number of electrons. Substituting the changes describetihe optimum values of the variational parameters? and

in (5) into Eq. (4), we find the Thomas-Fermi equation ~, obtained by minimizing the Lagrangian, are respectively
equal to 0.7280642371, -0.5430794693 and 0.3612163121.

di“ _ iﬂ _ (6) From other methods Marincat al. [17], solve the
de?  zt/2 7 Thomas-Fermi equation in this case using OHAM (Optimal

Homotopy Asymptotic Method), finding a pair of approx-

imate solutions with good accuracy. These solutions are
w(0) =1, u(co) = 0. @) some\_/vhqt complicated, introduc_ing_many parameters in a
combination (or rather a generalization) of solutions found

An important parameter is the magnitude of the initial Previously by other authors using simpler functions.

This new equation (6) satisfies

slope A solution has recently been tested which is based in
du(r) the trial function of Wu [10], in which we add other terms

B=- dr s (8  given account for a solution more closer to the numeri-

such as under numerical integration yiel#s = 0.50557 cal sqlution qbtaining good results adjusted to the semi-
— —1.588 [4]. analytic solution of other works In the area. The solu-

tion is of type Wu such that [11 ) = (1+ayz+
There have been many attempts to construct an appro>§)-m g ﬁ)yfexp (—2a/7) With[a ?]_Lm(‘)r(ggl 423(688781\££19
imate analytical solution of the Thomas-Fermi equation for R '
. . L . b=-—0.3442527917822383, andc = 0.08703140640977791.
gtoms [5,6] in these cases using vgr|at|onal principles, try- ur solution has shown to have relative errors below 4% with
Ing to solve the equation by proposing a one-parameter trlarespect to other solutions and to the numerical solution
function: _ 1 i 9 More recently Bougoffa [18] inspired in the Sommerfeld
ur(z) = (1 +nz)e™, ) solution found a solution to Thomas-Fermi equation by a

wheren = 1.905 and Csavinsky [7] has proposed a two- direct method to solve the differential equation. The idea

parameters trial function: is new and very simple but powerfully motivational. Their
method consists in the reduction of the original differential
ug(x) = (aoe_“‘”' + boe‘50“)2 , (10)  equation (6) into an equivalent equation, so that the solution

can then be expressed in a logarithmic form. In the process,
where ag=0.7218337, ap=0.1782559, by=0.2781663 and  once the solution is proposed, it is an algebraic subsidiary
Bo=1.759339. Later, Kesarwani and Varshni [8] suggested: condition that cannot be solved unless it approximates cer-
tain terms to simpler expressions, such as a function expan-

uz(z) = (ae‘o”” +be P 4+ ce‘“”)2 , (11)  sion. The result is that one can make several approximations
and obtain almost two distinct solutions.
where a=0.52495, «=0.12062, b=0.43505, (3=0.84795, In the present work, we propose a new trial function, con-
¢ = 0.04 andv = 6.7469. structed on the basis of the Bougoffa [18] function, which

The last two equations are obtained using an equivalermeproduces correctly the numerical solution of the Thomas-
Firsov’s variational principle [9]. The first equation has beenFermi equation [15]. It also gives more precise results for the
modified by Wu [10] in the following form: total ionization energies of heavy atoms in comparison with

the previously proposed approximate solutions.

ug(x) = (1 + my/z + nz)2e 2mVe, (12)

wherem = 1.14837 andn = 4.0187 x 10~°. 2. The system

Recgntl.y, M. Desanet al. [12] proposed the following We use variational techniques and optimization to find an-
expression: ) alytical solutions. In this case, the idea is that the Thomas-

us(x) = T (hp)ale’ (13) Fermidifferential equation, can be described by the following
[+ (kx)e] Lagrangian

wherea = 0.9237797117, b = 2.097976638 and k = L /du\? 2452
0.4834685937. Moreover, other attempts have been carried L(u) = = (“) 7%, (15)
out to solve this problem [13, 14]. But, all of these proposed 2 \dz 5zl/

trial functions do not reproduce appropriately the numerical This Lagrangian is equivalent to equation (6) when one
solution of the Thomas-Fermi equation [15] and its deriva-uses the Euler-Lagrange equation
tive atz = 0. They did not prove to be efficient when used to d 0L OL

S e 16
calculate the total ionization energy of heavy atoms. drouw 0w’ (16)
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where the prime symbol denotes derivative respect torthe analytically obtaining the corresponding Lagrangian
variable. Finally, the total Lagrangian will be

2 (5(12 + Hﬁ)

Vi L=—r——5", (20)
L = /de, (17) 2(1+ ax)s
0 Now integrating over the interval € (0, o),
thus, when a solution is fixed, = u(z, «;), i = 1,2, 3..., in % o
terms of some coefficients, it can be optimized using a total Lt = = + Giya’ (21)
Lagrangian minimum condition to find the value of arbitrary “
constant and optimizing
0L,
=0. (18)
oa; OLt 2 n T _ 0 (22)
_ da 5 128Va3
3. Solutions . . o .
The algebraic solution to the above equation is found di-
The first solution proposed in [18], is rectly
 (35m)2/3 23)
up1(2) = (1+ az) 2. (19) UV,

This solution is achieved from a direct method to solve the as- Bougoffa also proposes another solution such that

sociated differential equation and making approximations in _ -3

terms of a subsidiary condition. We propose the same func- upa(z) = (1 +az) = (24)
tion but in this case solved through variational method leady, this case , the result is

ing toa = 0.569270441723403 (fully analytical) in compar-

ison with the value found by Bougoffa = 9~'/3. When 9a2 2

this is calculated, however, the solution may also be achieved L 2(1 + ax)8 T 5vz(1 + az)15/2° (25)

TABLE |. The values of the functions proposed by Bougoffa by direct method (DM), our solutions via variational method (VM), and

numerical solution using a Runge-Kutta method.

b b

T Numerical Upy Upo Upy Upo

0 1 1 1 1 1
0.005 0.9925 0.995209 0.997143 0.994331 0.994683
0.01 0.9854 0.990453 0.994298 0.988711 0.989403
0.05 0.9352 0.953604 0.971919 0.945414 0.948483
0.1 0.8818 0.910364 0.944880 0.895179 0.900445
0.5 0.607 0.649971 0.760834 0.605955 0.611942
1 0.424 0.456075 0.592241 0.406073 0.401305
0.243 0.259910 0.379210 0.218657 0.199476
7.88E-2 0.086314 0.134052 0.067593 0.046610
10 2.43E-2 0.029649 0.040670 0.022325 0.010564
12 1.71E-2 0.021824 0.028095 0.016305 0.006836
15 1.08E-2 0.014831 0.017363 0.010989 0.003931
20 5.78E-3 0.008874 0.008954 0.006518 0.001871
25 3.47E-3 0.005900 0.005206 0.004310 0.001032
30 2.26E-3 0.004204 0.003290 0.003059 0.000628
35 1.55E-3 0.003146 0.002209 0.002283 0.000410
40 1.11E-3 0.002443 0.001555 0.001769 0.000283
45 8.28E-4 0.001952 0.001135 0.001411 0.000203
50 6.32E-4 0.001595 0.000854 0.001151 0.000150

Superscript* correspond to the Eqg. (19) and (24) for direct method, respectively, that is, the original solutions found by

Bougoffa. Superscrigt correspond to the Eq. (19) and (24) variational calculus, respectively, that is, our solutions.
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TaBLE Il. Comparison of the relative error (%) of the functions respect of numerical solution. In this case
ET(yNum,yi) = (yNum, - yv)/yl\lum x 100

x Er(Num,up;) Er(Num,ups) Er(Num,ub,) Er(Num,uby)
0 0 0 0 0
0.005 -0.2730 -0.4678 -0.1845 -0.2199
0.01 -0.5128 -0.9030 -0.3360 -0.4062
0.05 -1.9679 -3.9263 -1.0922 -1.4203
0.1 -3.2393 -7.1536 -1.5172 -2.1144
0.5 -7.0792 -25.3434 0.1721 -0.8142
-7.5649 -39.6797 4.2279 5.3523
-6.9589 -56.0535 10.0173 17.9108
-9.5364 -70.1170 14.2219 40.8492
10 -22.0156 -67.3688 8.1263 56.5232
12 -27.6306 -64.3018 4.6451 60.0180
15 -37.3276 -60.7725 -1.7573 63.5979
20 -53.5438 -54.9137 -12.7851 67.6216
25 -70.0325 -50.0457 -24.2141 70.2397
30 -86.0296 -45.5765 -35.3898 72.1740
35 -103.0245 -42.5636 -47.3534 73.4886
40 -120.1331 -40.0970 -59.4371 74.4948
45 -135.7528 -37.1338 -70.4694 75.4526
50 -152.4069 -35.1603 -82.2696 76.1368

TaBLE IIl. Comparison of total ionization energies in uni¢d {ao) from HF and solutions by direct method and variational calculus.

Z HF E(up1) E(ugs) E(up) Er(ug,) Er(ups) Br(up:)
92 28070 17790.17 10590.05 21065.86 36.62 62.27 24.95
93 28866 18244.65 10860.58 21604.01 36.80 62.38 25.16
94 29678 18705.68 11135.03 22149.94 36.97 62.48 25.37
95 30506 19173.30 11413.39 22703.67 37.15 62.59 25.58
96 31351 19647.54 11695.69 23265.22 37.33 62.69 25.79
97 32213 20128.40 11981.94 23834.62 37.51 62.80 26.01
98 33093 20615.92 12272.14 24411.91 37.70 62.92 26.23
99 33990 21110.12 12566.33 24997.10 37.89 63.03 26.46
100 34905 21611.02 12864.50 25590.23 38.09 63.14 26.69
101 35839 22118.64 13166.68 26191.32 38.28 63.26 26.92
102 36793 22633.01 13472.87 26800.40 38.49 63.38 27.16
103 37766 23154.15 13783.09 27417.49 38.69 63.50 27.40
104 38758 23682.07 14097.35 28042.63 38.90 63.63 27.65
105 39772 24216.81 14415.66 28675.83 39.11 63.75 27.90
106 40806 24758.38 14738.05 29317.12 39.33 63.88 28.15
107 41862 25306.81 15064.51 29966.52 39.55 64.01 28.42
108 42941 25862.11 15395.07 30624.08 39.77 64.15 28.68
109 44042 26424.31 15729.74 31289.80 40.00 64.28 28.95

Second column is HF numerical solution. The next three columns are ionization energies for Bougoffa and our solutions. In
this case, calculus far), andub, match. The last three columns represents error associated to each solution.
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Now integrating over the interval € (0, o), variational calculation offers better approximation and a so-
4096 9 lution closer to the numerical 5(_)Iution. _ _ _
Lt=———" 1+ (26) We proposed a couple of trial functions to find solutions
15015y/a 14 to the Thomas-Fermi equation, based on a solution obtained

by Bougoffa through a direct method for solving this dif-
ferential equation. Comparing the results in Table I, we
oLt 9 2048 0 (27) cansee that the Eq. (19) solved by variational methods has
a smaller error compared with that obtained by the direct
method throughout the measured range. This does not hap-

and optimizing again

Da 14 15015va3

we find pento Eq. (24), in which, the error is smaller only in the main
256 interval0 < 2 < 12. The errors calculated for solutions via
= ——— = 0.35573513495039094 28 . TR
T 9% 12523 (@8 direct method are 25.47% and 37.76% for the Egs. (19) and
: . . (24) respectively, compared with the errors for our solutions
1?: C&ff’f}g‘”” with the value found by Bougoffa which are 4.16% and 31.20%, respectively, taking in account

, .67 points to the: values.
The values of the functions proposed by Bougoffa (direct Furthermore, in the test of efficiency in Table IlI, for vari-

method) and our solutions (via variational method) are shown

in the Table I. It can be seen that both satisfy the boundarg:feze\?v\%i:]oem;’)l\gt?ozinfziiéhst %usrirfrr?rzz ?jrifescrtn%"eeinrhgzm-
conditions (7), obtaining accurate results. In Table Il, the rel- y 9 '

. . . . However, we can also see that the errors of ionization en-
ative error (%) of the solutions are shown in comparison toer ies, by both the direct method or variational method, in-
the numerical solution [15]. gies, by '

To test the efficiency of the different solutions, given by crease as th? atom gets heavier. This, of course, we can say
the Egs. (19) and (24) for direct method and variational cafhatour solutions are more accurate and can be used to calcu-
culus respectively, we have calculated the total ionization en/ate more conveniently some other features for heavy atoms.
ergy of heavy atoms following the relation [19] The derivative of our function (19) at = 0 is -1.13854

as for function (24) which is closer to the numerical deriva-

12 x 21/3 «« 77/3 du tive: -1.58807102 [15]. In the case for solution obtained for
T T x (972)1/3 dr oo’ (29)  direct method the derivative of function (19)aat= 0is equal

t0 -0.9615 and for function (24) a value of -0.572357.

in hartrees¢?/ao) and the obtained results, presented in Ta-

ble II, are compared with those of Hartree-Fock (HF) [20]. Acknowledgement
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