Revista Mexicana de Astronomía y Astrofísica

Revista Mexicana de Astronomía y Astrofísica

ISSN: 0185-1101

rmaa@astroscu.unam.mx

Instituto de Astronomía

México

Clarke, Cathie; Reipurth, Bo; Delgado Donate, Eduardo
Multiple protostars, jets, and the origin of brown Dwarfs
Revista Mexicana de Astronomía y Astrofísica, vol. 21, agosto, 2004, pp. 184-194
Instituto de Astronomía
Distrito Federal, México

Disponible en: http://www.redalyc.org/articulo.oa?id=57102143

Número completo

Más información del artículo

Página de la revista en redalyc.org

MULTIPLE PROTOSTARS, JETS, AND THE ORIGIN OF BROWN DWARFS 1

Cathie Clarke, 1,2 Bo Reipurth, 1,3 and Eduardo Delgado-Donate 2,4

RESUMEN

El hecho de que las estrellas jóvenes se agrupen en sistemas múltiples de pocos cuerpos y no-jerárque tiene profundas consecuencias para la comprensión de la formación de las estrellas, de las binarias y de planetas que pueden circundarlas. En este trabajo, reseñamos los avances teóricos que en los últimos diez se han hecho para modelar el rompimiento de estos cúmulos madre, y discutimos una serie de predicci observacionales que surgen de los modelos, en relación con la cinemática, la estadística de las binarias, existencia de discos en estrellas y en enanas marrones. Argumentamos que una de las manifestaciones espectaculares de las interacciones dinámicas en estrellas múltiples jóvenes debería ser la formación de fl Herbig-Haro gigantescos, y presentamos evidencia observacional que puede ser interpretada en este sentid

ABSTRACT

The observation that young stars are clustered in few body non-hierarchical multiple systems at very younges has profound consequences for our understanding of the formation of stars, binaries and the disks planets that may surround them. In this chapter we review theoretical progress made over the last de in modeling the break up of these natal clusters and discuss a range of observational predictions that from these models, relating to the kinematics, binary statistics and possession of disks of both stars and brown dwarfs. We also argue that one of the most spectacular manifestations of dynamical interactions in young multiple systems should be the formation of giant Herbig-Haro flows, and present observational evidence may be interpreted in this light.

Key Words: BINARIES: CLOSE — ISM: HERBIG-HARO OBJECTS — METHODS: N-BODY SII LATIONS — STARS: FORMATION — STARS: LOW-MASS, BROWN DWARFS

1. INTRODUCTION

It is commonly assumed that brown dwarfs are formed the same way as stars, but under conditions that lead to stellar objects with very small masses, i.e. from clouds that are very small, very dense, and very cold. However, with the growing realization that brown dwarfs may be nearly as common as stars, it is becoming disturbing that such special physical conditions are not readily found in the molecular clouds of our Galaxy (although they may exist elsewhere, see Elmegreen 1999).

Alternatively, Lin et al. (1998) suggested that the accidental encounter between two protostars with massive disks could fling out tidal filaments with lengths of about 1000 AU, out of which a brown dwarf might form. However, the fact brown dwarfs are increasingly discovered als loose T Tauri associations like Taurus, where encounters should be extremely rare, suggests this mechanism is unlikely to be a major source brown dwarfs.

Taking another approach, it has recently proposed that brown dwarfs have such extremely masses because they were ejected from small ters of nascent stellar embryos (Reipurth & Cl 2001). This can occur because the timescale for namical interactions and ejection is comparable the timescale for collapse and build-up of a star. basis for this model is thus closely tied to the lution of binaries and multiple systems at the earliest stages of stellar evolution (see, for exam Larson 2002).

Observations over the last decade have es lished that young T Tauri stars have the sam

¹Drs. Reipurth and Clarke each gave an invited talk at the Colloquium. They have, however agreed, with the editors' consent, to publish their contributions in a single paper of somewhat greater length than the others that derive from

fraction of both young and more evolved stars are also triple or higher-order multiple systems. The situation is much less clear among the very youngest, still embedded stars, due to the difficulties of probing into the heavily shrouded environment of such objects. However, new high resolution infrared techniques from the ground and space, as well as centimeter interferometry with e.g. the VLA, are beginning to yield results. In a detailed study of 14 driving sources of giant Herbig-Haro (HH) flows, Reipurth (2000) found that more than 80% are binaries, and of these half are higher order systems. It should be noted that these are the actually observed frequencies, without corrections for the considerable incompleteness of the observations, and so the results are in fact consistent with the possibility that all giant HH flow sources may be binary or multiple systems.

Embedded outflow sources are of the order of 10^5 yr old or less, and it follows that some of these systems must decay to reach the lower observed frequencies at later evolutionary stages. It is well established that non-hierarchical triple systems undergo rapid dynamical evolution and evolve into either a binary with a distant companion, i.e. a hierarchical triple system, or into a binary and an unbound, escaping third member.

In the following, we first outline the basic aspects of dynamical interactions in small multiple systems, and then summarize the latest results from N-body calculations based on gas dynamical simulations (Sect. 2). We then compare the theoretical predictions with the currently available observations (Sect. 3). Finally, in Sect. 4 we explore the possibility that the Herbig-Haro jet phenomenon is a manifestation of the dynamical evolution of small clusters of newborn stars.

2. DYNAMICAL INTERACTIONS IN MULTIPLE SYSTEMS

If the dominant mode of star formation involves the splitting of a core into N>2 fragments then important new ingredients enter the dynamics which are not encountered in the cases N=1 or N=2. The reason for this is simply that most N>2 body configurations are dynamically unstable; over several dynamical timescales the components exchange energy through the action of gravitational forces until they attain a stable equilibrium. In practice, this generally means that the mini-cluster disintegrates,

a mixture of binary and single stars that drift a so as to mingle with the ambient stellar field.

Below we summarize the progress that has made to date in quantifying such behavior, par larly with regard to the mass spectrum of the same (and brown dwarfs) produced, their binary stati and kinematics, and their association with circumstellar material. Although the study of such systems as gas free N-body systems is well developed, only recently that it has been possible to add these issues with well resolved hydrodynamical ulations.

2.1. N-body simulations

The simplest possibility is if all the gas is stantly accreted on to each protostar so that ensemble evolves thereafter as a system of p masses. This situation can be modeled as an body system and has been analyzed by many aut (e.g. van Albada 1968; Allen & Poveda 1974, Ste & Durisen 1998, 2003, Durisen, Sterzik & Pie 2001). The usual outcome of such simulations is the two most massive members of the system for binary, whereas the remainder are ejected as si stars. The ejection velocity of stars is related to orbital velocity during a close three body encou and scales as the inverse square root of the encou distance. For example, in Sterzik and Durisen's ulations, the typical separation between stars is tially around 100 AU, and typical ejection velocity of single stars are 3-4 km s^{-1} . Sterzik and Dur also quantified the dependence of ejection velo on stellar mass, and found that for N > 3, su dependence is very weak; however they found a nificant difference in the final velocities of single and binaries, with the centre of mass velocity of naries being typically a factor 3-6 less than th singles.

2.2. Addition of star-disk interactions in a parameterized form

The above simulations yield well defined protions for the fraction of stars of various masses end up in binaries (McDonald & Clarke 1993), do not however take account of the fact that fragments will have their interactions mediated circumstellar disks. This situation is less strait forward to model numerically, since there are known numerical difficulties in maintaining disk

and found that the main role of disks is to harden temporary binaries so as to protect them against disruptive encounters with other cluster members. As a result, more than one binary can be formed in each cluster; although the most massive cluster member was always in a binary, its companion was apparently randomly selected from the cluster members. The net effect of star-disk interaction was thus to boost the numbers of lower mass stars that ended up in binaries (either as primaries or secondaries) relative to the dissipationless (N-body) case.

2.3. Planting seeds: accreting point masses in a gas-rich environment

The simulations described above cannot say anything about the stellar initial mass function, since stellar masses are assigned at the outset of the simulation. Such instantaneous mass assignment is of course a very poor approximation to the behavior of real fragmenting cores: the interactions that lead to the formation of binaries and break up of the cluster occur over a few dynamical times, but the infall of mass onto each of the stars happens on a comparable timescale. Thus realistic simulations need to address the whole process as a hydrodynamic one and follow through the evolution of a core that is initially 100% gas.

One approach is to set up cores in which 'seeds' of collapsed gas have been planted (Bonnell et al. 1997; Bonnell et al. 2001). These seeds grow in mass due to gas accretion in an inequitable manner their orbital histories determine whether they spend much time in the densest central regions of the core and hence how much mass they acquire. Such simulations vividly demonstrate how 'competitive accretion' works: seeds that get an early head start in the race for mass tend to settle into the cluster core and thereby acquire more mass, whereas seeds that do not grow much initially are more likely to be flung out of the core and hence be prevented from further growth. Thus competitive accretion provides a ready mechanism for obtaining a large dynamic range of final stellar masses from arbitrary initial conditions.

Simulations by Delgado-Donate, Clarke & Bate (2003) have quantified the IMF produced by competitive accretion during the break up of small (N=5) clusters (Fig. 1) and find that it is broadly compatible with the observed IMF. (Note that in these simulations no disks are formed around the protostars

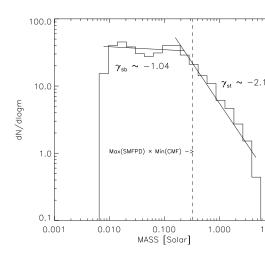


Fig. 1. Initial Mass Function as quantified by Delg Donate et al. (2003). The mass function results from convolution of the core splitting function with a polaw core mass function, in this case extending dow $0.3 M_{\odot}$.

are similar to the minimum core mass, and decli at masses below this. The reason for this is that division of mass for given core mass is essentiall modal - there is a high mass peak corresponding binary pair and a lower mass peak correspondir ejected singles or wide tertiary companions. W this is convolved with a core mass function that clines steeply toward high masses, the majorit stars of given mass belong to the high mass of low mass cores rather than the low mass pea rare, high mass cores. Consequently, the stellar i function follows the core mass function. Thus the served similarity between the core mass function the stellar IMF (Motte, André & Neri 1998) ca of itself be used to disprove the hypothesis that $stars\ arise\ in\ small\ non-hierarchical\ multiples.$

The outcome of these simulations shares in qualitative similarities with the dissipationless body) results of Sterzik and Durisen. As in a simulations, there is no appreciable dependence final velocity on resulting stellar mass, but the barries attain speeds that are a factor ~ 10 less than typical ejection speeds of the single stars. The refor this is that these (N=5) simulations product general only one binary per core, and this (plus loosely bound companions) remains close to the

so that the frequency of brown dwarf companions in pure binary systems (or in the central binary of triple systems) is very low. However, low mass stars and brown dwarfs are typically found as the outermost companions in triples and higher-order multiples, since not all ejections yield an unbound escaper.

2.4. Turbulent initial conditions

A more realistic approach involves abandoning the artificial distinction between seeds and smoothly distributed background gas in the above simulations. Instead, recent simulations start with gas that is subject to a supersonic turbulent velocity field which rapidly generates a richly non-linear density structure in the gas (Klessen, Heitsch & Mac Low 2000; Klessen 2001). Such simulations follow not only the competitive accretion between contending 'stars' and their dynamical interactions, but also the formation of stars from pockets of Jeans unstable gas. The most ambitious simulation to date is that of Bate and collaborators (Bate, Bonnell & Bromm 2002a,b; 2003) which models a system that will form of the order a hundred stars, whilst resolving structures down to a few Jupiter masses, (see Bate 2004). This simulation readily demonstrates the formation of small-N ensembles in which the sort of behavior described above (binary formation, competitive accretion, ejection of low mass members, star-disk interactions) is observed to occur. Such one-off simulations however make it difficult to extract accurate statistics and probe initial conditions, due to the computational expense involved in modeling a 50 M_{\odot} cloud.

A complementary strategy has been adopted by Delgado-Donate, Clarke & Bate (2004a) (see also Goodwin, Whitworth & Ward-Thompson 2004), which involves the modeling of individual turbulent cores rather than larger structures containing several cores. In this way, the unpredictable outcome of turbulent fragmentation models can be statistically described using multiple realizations of the same initial conditions, and different initial conditions can be easily explored. Moreover, the system can be followed until any desired fraction of the system mass is incorporated into stars and its further evolution followed by N-body integration.

To date, such explorations of parameter space suggest that the substellar IMF may be quite sensitive to different input assumptions, whereas the IMF in the stellar regime appears rather robust. (We

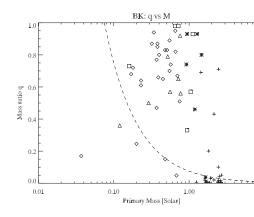


Fig. 2. Mass ratio q versus primary mass for the system formed in the turbulent models. The symbol code follows: binaries=diamonds, triples=triangles, quaples=squares, asterisks=quintuples, crosses=hiporder multiples. To the left of the dashed line are systems in which the companion is a substellar of To the bottom left, the only binary brown dwarf for in these simulations.

was quite sensitive to the slope of the turbule power spectrum employed, yielding resulting I in this regime which differed at the $\sim 2\sigma$ level. result suggests that the final mass of low mass jects (i.e. brown dwarfs) is rather sensitive to precise timing of ejection events and can there respond to small variations in initial conditions affect the internal dynamics of the resulting sclusters. Current observational data on the IM star forming regions suggest that the IMF in the stellar regime may indeed vary much more between the tree of the internal dynamics after the IMF in the stellar regime (Briceno et al. 2002, Preibisch, St & Zinnecker 2003, Jameson et al. 2002).

Notwithstanding these differences in the yield of brown dwarfs as the slope of the turbu power spectrum is varied, the properties of the sulting multiple systems, both regarding their is nal composition and their kinematics, show not pendence on the input turbulent spectrum employ and henceforth we discuss the results obtained combining all the turbulent simulations described Delgado-Donate et al. (2004a). Fig. 2 shows binary pairing characteristics resulting from the turbulent fragmentation models. As in the pring seeds simulations, binary stars tend to have a ratios close to unity, but the probability of form

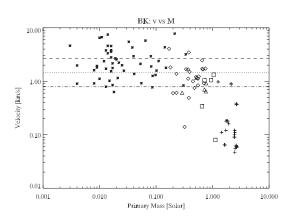


Fig. 3. Velocity with respect to core centre of mass versus primary mass for the systems formed in the turbulent models. The symbols are as in Fig. 2 except that small asterisks now represent singles, and quintuples are included as higher-order multiples (i.e. crosses). The dashed line denotes the mean velocity of singles, the mean velocity of binaries being represented by the dotted line. The dot-dashed line stands for the mean velocity of multiples of an order higher than two. The offset between the velocity dispersion of singles and binaries is very small, in contrast with previous, more simple, simulations.

nary systems formed so that the binary fraction for stars is approximately 0.6, comparable to that found in the field. This multiple binary formation, however, does not lead to the formation of many binary brown dwarfs since, as in the planting seeds case, the binary systems are the main focus of accretion and so the stellar boundary is reached in a short timescale, before binary-binary interactions lead to the ejection of one of the systems. Only one out of 27 binaries formed in these models turned out to be a binary brown dwarf, a fraction that is rather lower than current observational estimates.

The kinematics of stars produced in turbulent fragmentation simulations differs from that of previously described models. In the turbulent models, an average of 3 binaries are formed per core, and therefore binary-binary interactions are important. This means that binaries can be ejected as well as singles, and therefore the velocity offset between the two populations is not large. This can be seen in Fig. 3 which shows that although higher-order (N > 5) multiples can have a very low velocity dispersion, binaries, triples and quadruples display a

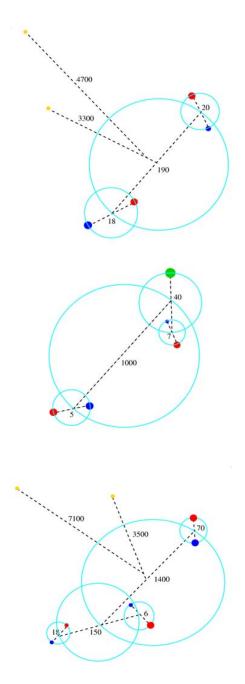


Fig. 4. Pictorial representation of the hierarchical n

MULTIPLE PROTOSTARS, JETS, AND BROWN DWARFS

whenever a given core possesses physically separated sites of star formation, so that the formation of one binary does not inhibit the formation of another).

The most robust signature of dynamical simulations, which is shared by the turbulent runs and their simplified predecessors, is the pronounced mass segregation within hierarchical multiple systems. The configurations that tend to survive are those in which the most massive objects constitute the central binary and the remaining low mass members (among them many brown dwarfs) are hierarchically distributed at larger distances: Fig. 2 shows the variety of multiple systems that can be formed, whilst Figure 4 is a pictorial representation⁵ of the types of hierarchical system that account for $\sim 75\%$ of the multiples produced (see Delgado-Donate et al. 2004b). Therefore, these models predict that a large fraction of observed binaries should turn out, on closer examination, to be triples, either because there is a wide low mass component that might have been missed previously, or because the apparent primary is itself a spectroscopic binary system. It is a crucial test for these models that a substantial number of such systems are investigated.

3. COMPARISON WITH OBSERVATIONS

3.1. Brown dwarfs in the vicinity of Class 0 objects

Small N-body systems that are still accumulating mass from an infalling envelope would observationally be seen as a Class 0 or perhaps a Class I source with strong outflow activity. If brown dwarfs are formed by the disintegration of small N-body systems, it follows that the very youngest brown dwarfs should be found in the immediate vicinity of such sources. As a small multiple system breaks up, low mass members are ejected from the nascent envelope, and may on time scales of order 10^3 years emerge from being deeply embedded infrared sources with ample far-infrared and sub-mm emission to being optically visible T Tauri-like stars. In this radically different picture of early stellar evolution, the gradual and smooth transition between Class 0 and Class II sources can be replaced by a rather abrupt transition, and the main accretion phase for the members of a multiple system is terminated not by the infalling envelope running out of gas, or outflow blowing away the last parts of the envelope, but by the newborn members "leaving the nest" (Reipurth One observational test of the dynamical fortion model of brown dwarfs would be to study of the statistics of brown dwarfs in the vicini Class 0 sources. For a velocity of 1 km s⁻¹, a brown dwarf moving out of a nearby ($d \sim 130$ pc) cloud an angle of 60° to the line-of-sight will already arcmin away after 2×10^{5} yr. (Note that half ejected brown dwarfs will move into the cloud which they formed. Such objects will be detected only as highly extincted and weak infrared sour

$3.2. \ Stars \ with \ brown \ dwarf \ companions$

It has been known for some time that by dwarfs are only rarely found as close (less than 3 companions to low mass stars (the "brown d desert"). But recent work by Gizis et al. (2001) demonstrated that brown dwarfs are commonly of panions to normal stars at large separations (gre than 1000 AU). The separation distribution of br dwarfs in binary systems contains important in mation about their formation, and establishin form more precisely will form a crucial test for theory of brown dwarf formation. The ejection pothesis readily explains the currently available servations: brown dwarfs should rarely be foun close companions to stars, as they would usually continued to accrete mass at almost the same ra their stellar companions, thus pushing through substellar/stellar boundary at almost the same t On the other hand, distant brown dwarf com ions are readily expected, because not all eject will lead to unbound systems, though we predict Sect. 2) that these wide low mass companions a fact outliers in triple or higher-order multiple tems.

3.3. Mass segregation among multiple star syst

A robust prediction of all simulations to da that there should be a tendency for mass segregate within multiple star systems, i.e. lower mass obshould more frequently be wide companions whigher mass objects should tend to be incorpor in the central binary. Clearly, observations te that this is not universally the case (i.e. one can example of triples where the binary is lower nor where the least massive member is the binary ondary, rather than the triple companion). Not theless, it would be timely to examine this issue

3.4. Binary brown dwarfs

A number of brown dwarfs have been found to be binaries (e.g. Martín, Brandner, & Basri 1999), but, intriguingly, they appear to be rather close binaries, whereas wide pairs (many hundreds of AU) have so far not been found. In the ejection scenario, a binary with brown dwarf components will remain substellar only if the binary is ejected out of the main accretion region, and thus only tight brown dwarf pairs are expected to survive the ejection event. This expectation (no wide brown dwarf binaries) is confirmed by the numerical simulations, although we note that the number of brown dwarf pairs at any separation is rather low in these simulations.

3.5. Comparison with cluster color-magnitude diagrams

Figure 5 compares the color-magnitude diagram for the Praesepe cluster (Hodgkin et al. 1999) with the output of the turbulent simulations detailed in Delgado-Donate et al. (2004b). The filled circles represent the observational data, whilst the open circles and squares are respectively single stars and multiples from the simulations. The spatial resolution of the data implies that binaries tighter than 200 AU are unresolved in this diagram, and the width of the main sequence is an immediate indication that binaries and higher order multiples are abundantly present in this cluster. Indeed the width of the sequence produced by the simulations is very similar to that seen in Praesepe, implying that the observations require a star formation model in which high order multiples (i.e. with N > 2) are common. Figure 5 also shows up some shortcomings of the models, although these may be an artefact of the fact that the simulations all result from cores with the same total mass $(5M_{\odot})$. For example, they under-predict the incidence of single stars and/or extreme mass ratio binaries at the higher mass end, since in the simulations binaries are never formed with a mass that is sufficient to eject a solar mass star as a single star. Likewise, the fact that core masses in the simulations do not extend down to low values means that the simulations under-predict the incidence of binaries at low masses. Although the agreement with the data at intermediate masses is encouraging, further comparison must await simulations that include a realistic core mass spectrum.

0.0 77:

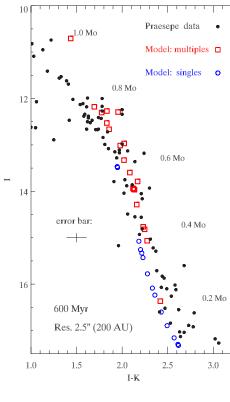


Fig. 5. Observed color-magnitude diagram for Praccompared with simulation results

dispersion, with respect to their natal cores, should young stars (see Joergens & Guenther 20 This prediction has been successively modified the results of numerical simulations: in the case only one binary is formed per star forming core main kinematic difference is between single stars binaries, although, given the lower binary frac among lower mass stars, this translates into a fective dependence of velocity on mass (i.e. br dwarfs would have a higher velocity dispersion stars because the binary fraction is higher an stars: see Delgado et al. 2004a, Kroupa & Bou 2003a,b). However, where more than one bina formed per core, the binaries are themselves eje from the core and the velocity distribution is ne a strong function of mass or binarity (see Fig. 3). idently, measurement of the differential velocity of the velocities predicted (see Fig. 3) are not much larger than the core-core velocity dispersion in star-forming regions.

3.7. Circumstellar emission in young stars and brown dwarfs

When objects are ejected from young clusters, any disks they possess will be truncated at a radius that is typically half the distance of closest approach during their closest encounter. In the absence of viscous evolution, therefore, disk radii probe the stellar densities in the natal cluster. As the disk viscously evolves thereafter, its radius following truncation is 'remembered' as setting the timescale for subsequent disk dispersal (Armitage, Clarke & Palla 2003). It is now becoming firmly established that young brown dwarfs commonly possess near-infrared excesses, indicative of optically thick inner disks (e.g. Muench et al. 2001), and that, moreover, the incidence of such disks is similar to that in T Tauri stars (Liu, Najita & Tokunaga 2003). This implies that the lifetimes of disks around brown dwarfs are similar to those around T Tauri stars, which roughly translates into the fact that their disks must be similar in size. Armitage et al. concluded that the lifetimes of disks in T Tauri stars are compatible with mean initial disks sizes of around 10 AU. If one adopts this value, then the disk fractions measured in young brown dwarfs rules out models in which the bulk of objects suffer encounters at radii of a few 10s of AU or less. The detection of millimeter emission around young brown dwarfs would provide better constraints on disk radii and thus further constrain the types of dynamical environments in which they could have been born.

3.8. Brown dwarfs and extrasolar planets

Brown dwarfs exceed the mass of planetary mass objects (PMOs) by less than an order of magnitude, but in at least one respect they are very different: radial velocity surveys (e.g. Marcy, Cochran & Mayor 2000) reveal that PMOs are commonly found at close separations around solar type stars, whereas the incidence of brown dwarfs at such radii (< 3 AU) is much lower. Although this result could in principle be explained in terms of enhanced inward orbital migration in the PMOs (due to their lower mass), the lack of a separation-mass correlation among PMOs argues against this hypothesis. Currently there are no observational constraints on the incidence of PMOs

age of the objects concerned. Thus to date the robust difference in the distribution of brown dv and PMOs relates to their incidence in tight o around solar type stars.

How may one understand these results in context of the ejection model? The lack of br dwarfs in close orbits around solar type stars res in these models, from the fact that even if br dwarfs are formed in that location, they rapidly crete mass so as to exceed the hydrogen burning i limit. Evidently, PMOs at small radii have avo this fate, and their presence can be understood in ejection model only if they are formed at a later. gas-rich, evolutionary phase, probably after the integration of the natal cluster. Conventional accretion models for giant planet formation w certainly satisfy this constraint. Given that we argued that most brown dwarfs are ejected: small cluster environments, rather than conder from very low Jeans mass cores in situ, we would wise not expect free floating PMOs to form in and must therefore rely on ejections to produce a population. It is not clear, however, whether ejections would result from interactions in the ter environment (in which case at least some P must form early, as in the models of Boss (20 or whether they would instead result from dyn ical interactions among multiple planetary syst as advocated by Papaloizou & Terquem (2001 which case the timescale for planet formation is constrained.

4. HERBIG-HARO FLOWS AND THE EVOLUTION OF MULTIPLE SYSTEM

Outflow activity is associated with all stage early stellar evolution. Perhaps the most magnifi of the various outflow phenomena are the Her Haro (HH) flows, consisting of luminous shock various scales, often along well defined flow axes a review see Reipurth & Bally 2001). HH flows attain dimensions of several parsecs, terminating giant bow shocks, and with dynamic ages of eral times 10⁴ yr. When a giant flow has magneticated please of their ejections is about 2000 yr. More common the HH flows have series of knots closer to their drift sources and with characteristic timescales of magnetic hundred years. Finally, some HH flows display frollimated jets, where the ejection timescale of

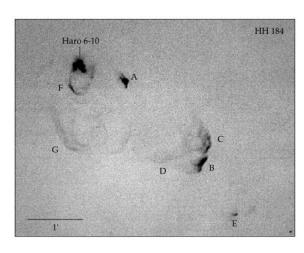


Fig. 6. The small group of HH objects near the young binary Haro 6-10 form two independent flows, one to the south-west (A-E) and another to the SSE (F-G). From Devine et al. (1999).

stars offers an attractive way to explain the range of timescales observed in HH flows.

Dynamical interactions will transform a nonhierarchical triple system into a hierarchical one, in the process ejecting a member (into either a bound or an unbound orbit). The binary system that is formed in this dynamical process is highly eccentric, and given that the triple disintegration is likely to take place while the stars are still actively accreting gas from an infalling envelope, it follows that the circumstellar disks will interact on an orbital timescale, which will lead to shrinkage of the orbit (e.g. Artymowicz & Lubow 1996). These interactions are again likely to cause cyclic variations in the accretion rate, with consequent pulses in the outflow production, and the giant HH flows may therefore represent a fossil record of the birth and early evolution of binary systems (Reipurth 2000). More specifically, the giant HH bow shocks may result from close triple encounters; once the third member of a triple system has been ejected, no further giant bow shocks will be produced. As the orbit of the resulting binary evolves, periastron passages with ensuing disk disturbances will occur with increasing frequency, initially on timescales of many hundreds of years, but eventually measured in decades. Once the semi-major axis becomes smaller than approximately 10 AU the circumstellar disks are so seriously truncated that jet activity soon after begins to die out.

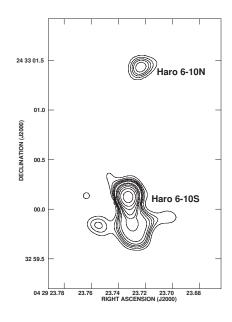


Fig. 7. A high resolution 3.6 cm radio continuum VLA of Haro 6-10 shows that it is a compact triple system. southern companion to Haro 6-10S drives a small bipolar jet along an east-west axis. ¿From Reipurth et al. (2004)

et al. 1999). Closer to the source there is a s group of HH objects, known as HH 184. The ous knots are labeled in Fig. 6. The main flow of the giant HH flow is defined by a line thro the star and knot E. But as we approach the the knots B, C, and A deviate increasingly from principal flow axis, while to the south-east kno and F appear to form a separate, independent: It is noteworthy that the ratio of the projected tances of knots A and B from the star is almost actly the ratio of the distances to knots F and It thus appears that the events that formed k A and B were contemporaneous with events for F and G. This synchronism, as well as the gra axis changes, are well understood in terms of knots being formed at the periastron passages binary system. When the binary components their disks get close enough to perturb each of significantly, simultaneous outbursts take place. tidal forces may warp the disks, and thus create observed gradual changes of the outflow axes.

The visible young star Haro 6-10 indeed ha embedded infrared companion about 1 arcsec to north. Furthermore, new high-resolution VLA materials and the statement of the start of the start

shocks are about 6000 yr old, and if the infrared companion to the north was ejected from the system at that time, it is drifting away with a projected velocity of 0.15 km s^{-1} , consistent with the theoretical calculations presented in Sect. 2.

Altogether, in this review, we have argued that seemingly disparate phenomena like the birth of binaries, Herbig-Haro jets, and the formation of brown dwarfs, are in fact all aspects of the same underlying phenomenon, namely the evolution and break-up of small multiple systems of newborn stars.

BR thanks Observatoire de Bordeaux, where part of this review was written, for hospitality.

REFERENCES

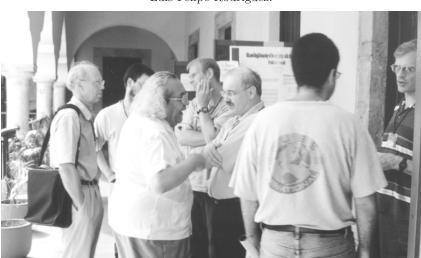
- Allen, C., & Poveda, A. 1974, in The Stability of the Solar System and of Small Stellar Systems, ed. Y. Kozai (IAU Symp. No. 63) (Dordrecht: Reidel), 239
- Armitage, P. J., Clarke, C. J., & Palla, F. 2003, MNRAS, 342, 1139
- Artymowicz, P., & Lubow, S. H. 1996, ApJ, 467, L77 Bate, M. R. 2004, this volume
- Bate, M. R., Bonnell, I. A., & Bromm, V., 2002a, MN-RAS, 332, L65
- Bate, M. R., Bonnell, I. A., & Bromm, V., 2002b, MN-RAS, 336, 705
- Bate, M. R., Bonnell, I. A., & Bromm, V., 2003, MNRAS, 339, 577
- Bonnell, I. A., Bate, M. R., Clarke, C. J., & Pringle, J. E. 1997, MNRAS, 285, 201
- Bonnell, I. A., Clarke, C. J., Bate, M. R., & Pringle, J. E. 2001, MNRAS, 324, 573
- Boss, A. P. 2001, ApJ, 551, L167
- Briceno, C., Luhmann, K.L., Hartmann, L., Stauffer, J. R., & Kirkpatrick, J. D. 2002, ApJ, 580, 317
- Clarke, C. J., & Pringle, J. E. 1991, MNRAS, 249, 588 Delgado-Donate, E. J., Clarke, C. J., & Bate, M. R., 2003, MNRAS, 342, 926
- Delgado-Donate, E. J., Clarke, C. J., & Bate, M. R., 2004a, MNRAS, 347, 759
- Delgado-Donate, E. J., Clarke, C. J., Bate, M. R. & Hodgkin, S. T., 2004b, MNRAS, submitted
- Devine, D., Reipurth, B., Bally, J., & Balonek, T. J. 1999, AJ, 117, 2931
- Durisen, R., Sterzik, M., & Pickett, B. 2001, A&A, 371,
- Elmegreen, B. C. 1999, ApJ, 522, 915
- Ghez, A. M., Neugebauer, G., & Matthews, K. 1993, AJ, 106, 2005

Gizis, J. E., Kirkpatrick, J. D., Burgasser, A., Re-N., Monet, D. G., Liebert, J., & Wilson, J. C. ApJ, 551, L163

MULTIPLE PROTOSTARS, JETS, AND BROWN DWARFS

- Goodwin, S., Whitworth, A., & Ward-Thompson 2004, A&A, submitted
- Hodgkin, S. T., Pinfield, D. J., Jameson, R. F., Stee A., Cossburn, M. R., & Hambly, N. C. 1999, MNI
- Jameson, R. F., Dobbie, P. D., Hodgkin, S. T., & Pin D. J. 2003, MNRAS, 335, 853
- Joergens, V., & Guenther, E. 2001, A&A, 379, L9 Klessen, R. 2001, ApJ, 556, 837
- Klessen, R., Heitsch, F., & Mac Low, M. 2000, ApJ,
- Köhler, R., & Leinert, C. 1998, A&A, 331, 977
- Kroupa, P., & Bouvier, J. 2003a, MNRAS, 346, 343 Kroupa, P., & Bouvier, J. 2003b, MNRAS, 346, 369
- Larson, R. B. 2002, MNRAS, 332,155 Lin, D. N. C., Laughlin, G., Bodenheimer, P., & F. czka, M. 1998, Science, 281, 2025
- Liu, M. C., Najita, J., & Tokunaga, A. T. 2003, 585, 372
- Lucas, P. W., Roche, P. F., Allard, F., & Hauschild
- H. 2001, MNRAS, 326, 695
- Marcy, G. W., Cochran, W. D., & Mayor, M. S. in Protostars and Planets IV, eds. V. Manning P. Boss, & S. S. Russell, (Tucson: Univ. of Ari Press), 1285
- Martín, E. L., Brandner, W., & Basri, G. 1999, Scientific Science and Company of the Company of 283, 1718
- McDonald, J., & Clarke, C. J. 1993, MNRAS, 262,
- McDonald, J., & Clarke, C. J. 1995, MNRAS, 275, Motte, F., André, P., & Neri, R. 1998, A&A, 336, 1
- Muench, A. A, Alves, J. A., Lada, C. J., & Lada, I 2001, ApJ, 558, L51
- Papaloizou, J. C. B., & Terquem, C. 2001, MNRAS,
- Preibisch, T., Stanke, T., & Zinnecker, H. 2003, A 409, 147
- Reipurth, B. 2000, AJ, 120, 3177
- Reipurth, B., & Zinnecker, H. 1993, A&A, 331, 977 Reipurth, B., & Clarke, C. J. 2001, AJ, 122, 432
- Reipurth, B., & Bally, J. 2001, Ann. Rev. Astron. A phys. 39, 403
- Reipurth, B., Rodríguez, L. F., Anglada, G., & Bal 2004, AJ, in press
- Sterzik, M., & Durisen, R. 1998, A&A 339, 95
- Sterzik, M., & Durisen, R. 2003, A&A 400,1031 Tokovinin, A. A. 2004, this volume
- van Albada, T. S. 1968, Bull. Astron. Inst. Netherla 19, 479
- C. J. Clarke: Institute of Astronomy, Madingley Road, Cambridge CB30HA, UK (cclarke@ast.cam.ac.uk) - of Harrati 9600 Was diama Drive Harratela III 06099

IAU Colloquium 191 - The Environment and Evolution of Double and Multiple Stars (© Copyright 2004: IA, UNAM) Editors: C. Allen & C. Scarfe


DISCUSSION

Tokovinin – It may well be true that in a typical triple the tertiary component is the least massive one in 4 out of 5 nearby triples). Such systems are missing from current catalogs, so observers need to make effort to recover those triples.

Scarfe – Quite often, in the triple systems Frank Fekel and I have observed the distant companion is most massive star. Regrettably, the number of systems for which we can say this with certainty is still sn

Luis Felipe Rodríguez.

