Monsalvo, Raúl; de Pablo, Liberto; Chávez, M. Lourdes
Hydration of Ca-montmorillonite at basin conditions: A Monte Carlo molecular simulation
Universidad Nacional Autónoma de México
Querétaro, México

Available in: http://www.redalyc.org/articulo.oa?id=57230106
Hydration of Ca-montmorillonite at basin conditions:
A Monte Carlo molecular simulation

Raúl Monsalvo¹, Liberto de Pablo²*, and M. Lourdes Chávez¹

¹ Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Interior, Del. Coyoacán, 04510 México, D. F., Mexico.
² Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, Del. Coyoacán, 04510 México, D. F., Mexico.
* liberto@servidor.unam.mx

ABSTRACT

Monte Carlo simulations in NP, T and μVT ensembles of the hydration of Wyoming-type Ca-montmorillonite have shown the interlayer configurations. Ca-montmorillonite may hydrate to one-, two- and three-layer hydrates of d001 spacing 11.83, 13.73, and 15.60 Å at 353 K and 625 bar. At lower temperatures and pressures the spacing increases. Grand canonical simulations show that the one-layer Ca-montmorillonite hydrate of d001 spacing 12.11 Å is stable at 333 K, 300 bar, -7.21 kcal/mol potential, at a 2.0 km depth of normally compacted sediments. Two- and three-layer hydrates do not form. At 353 K, 625 bar, -5.58 kcal/mol potential, the one-layer hydrate is nearly stable. In the clay interlayer, the water molecules are clustered on the midplane, with their protons pointing towards the siloxane surfaces on both sides and on the midplane. The Ca²⁺ cations are solvated in outer-sphere coordination, separated 2.77 Å from the water molecules. In sedimentary basins under normal geotherms, one-layer Ca-montmorillonite is the single hydrate stable at 2 km depth; under over-compactsed sediments at 2.7 km depth it becomes unstable.

Key words: montmorillonite, Ca-montmorillonite, hydration, simulation, Monte Carlo, stability.

RESUMEN

Simulaciones Monte Carlo en conjuntos NP, T y μVT de la hidratación de Ca-montmorillonita tipo Wyoming muestran la configuración interlaminar. Ca-montmorillonita puede formar hidratos de una, dos y tres capas, con espaciamiento d001 de 11.83, 13.73, y 15.60 Å respectivamente a 353 K y 625 bar. A temperaturas menores el espaciamiento es mayor. Simulaciones en conjuntos μVT indican la formación del hidrato de una capa, estable a 333 K, 300 bar, potencial -7.21 kcal/mol, espaciamiento d001 12.11 Å. No se forman los hidratos de dos y tres capas. A 353 K, 625 bar, potencial de -5.58 kcal/mol, el hidrato de una capa no es estable. En el espacio interlaminar, las moléculas de agua se agrupan en el plano intermedio alternativamente orientadas con los protones hacia las superficies de siloxano a ambos lados y en el plano intermedio. Los cationes Ca²⁺ están totalmente solvatados, fuera del plano intermedio, a distancia de 2.77 Å de las moléculas de agua. En sedimentos bajo condiciones normales el monohidrato de Ca-montmorillonita es estable a 2 km de profundidad, mientras que bajo sedimentos sobre-compactados a 2.7 km de profundidad se vuelve inestable.

Palabras clave: montmorillonita, Ca-montmorillonita, hidratación, simulación, Monte Carlo, estabilidad.
INTRODUCTION

The adsorption of fluids and chemical species by expandable clay minerals is important to digenetic, meta-
morphic, petrologic, and geochemical processes (Huggett
and Shaw, 1993), soil physics, properties and behavior of
soils (Aylmore and Quirk, 1967), stability, retention and
transport of contaminants (Cotter-Howells and Patterson,
2000), waste management (Rutherford et al., 1980) and, in
oil exploration and recovery, to borehole stability (Hall
et al., 1986; Hall, 1993), adsorption of stabilizing additives
and polymers, overpressure and migration of hydrocarbons
(Hall, 1993).

The hydration and dehydration of the minerals result
in adsorption or separation of fluids and chemical species
that affect contamination, rock strength, pore pressure,
swelling, and the overall stability of clay systems. The
interactions between the clays and fluids are of particular
interest to the retention of nutrients and the adsorption,
accumulation, decomposition, release, transport, and uti-
lize fate of contaminants in soils, to soil mechanics, and
in petroleum-rich basins to the recovery of oil and gas and
the quality of the reservoir.

Clay minerals of the smectite type are common. In soils
and sediments usually occur Na-, Ca-, and Mg-
montmorillonite or their combinations. In clay deposits,
in Mexico are found Ca-, Na-, and Mg-montmorillonite in
the underclays of the Mexican Basin, subjected to hydra-
ion- dehydration, contaminants, and occasional multiplying
seismic effects; in Durango the dominant species is Na-
montmorillonite, low-calcic and high-swelling, whereas in
other localities, namely Tlaxcala and Guerrero, predominate
Ca- and Mg-montmorillonite.

In industrial processes, smectites are normally used
in their protonic form or with different adsorbed metallic
and organic species to impart distinct properties. Their
characteristics and behavior vary, usually associated with
their silicic framework and surface properties; structural
replacements modify the structural framework to change
the surface properties and ultimate behavior of the clay.
Reactions on the clay surface define their properties. Na-
and Ca-montmorillonite are the most abundant on which
other chemical species, fluids, metallic and organic ions or
molecules build.

Smectites are relatively stable but prone to trans-
form and modify their properties. Their fine particle size
and disordered structure are not easily amenable to some
analytical techniques but they are characterized by proper
mineralogical procedures. Their surface properties are
highly sensitive to the surrounding environment and more
complex to characterize, essentially on account of their in
situ behavior. As in many geochemical and mineralogical
processes, i.e., mineral deposition from hydrothermal fluids
or mineral stability at high temperatures, pressures or depths
under brines and oil fluids, require complex interpretations
and explanations, often distinct from those available from
experimental data or extrapolated from different environ-
ments and conditions.

In the present paper is discussed the behavior of Ca-
montmorillonite under surface and low-depth environments,
as determined from molecular simulations. Reactions on
the clay surface are fundamental to establish interrelations
with parent minerals and understanding related processes.
Molecular simulations allow characterization of the clay
interlamellar space at the atomic and molecular levels,
identifying fundamental properties, reaction mechanisms,
thermodynamics, and kinetics of reactions, mimicking in
situ conditions not easily reproduced experimentally or
where direct observation is not simple.

Ca-montmorillonite is a 2:1 expandable clay mineral
that swells upon contact with water. Experimental studies
(Posner and Quirk, 1964; Pezerat and Mering, 1967; Keren
and Shainberg, 1975; Suquet et al., 1975; McEwan and
Wilson, 1980; Slade et al., 1991; Sato et al., 1992; Cases
et al., 1997; Bray et al., 1998; Bray and Redfern, 1999,
2000) have shown that at the ambient conditions of 300 K
and 1 bar the anhydrous phase of d001 spacing 9.55 – 9.96
Å hydrates to 11.19 – 12.45 Å one-layer hydrate, 15.00
– 15.50 Å two-layer hydrate, and 18.0 – 19.1 Å three-layer
hydrate. Monte Carlo simulations (Chávez-Páez et al.,
2001a) have shown that in the same ambient environment
of 300 K and 1 bar are formed stable 9.82 Å, 12.20, 14.70,
and 18.4-19.0 Å anhydrous, one-, two-, and three-layer
hydrates. However, the characteristics and stability of Ca-
montmorillonite at conditions other than atmospheric have
been scarcely described (Stone and Rowland, 1955; Koster
von Groos and Guggenheim, 1987, 1989; Khitarov and
Pugin, 1996; Siqueira et al., 1997, 1999; Wu et al., 1997;
de Pablo et al., 2005).

Parent Na-montmorillonite has been shown from
simulation studies to form the stable monolayer hydrate
at 353 K and 625 bar whereas K-montmorillonite does not
(de Pablo et al., 2004; Chávez et al., 2004; de Pablo et al.,
2005). The condition of 353 K and 625 bar is particularly
significant. It prevails at a 2.7 km depth of over-compacted
sediments, where clay minerals may transform by adsorbing
or releasing components or from reaction with circulating
brines, oil and gas flows.

The behavior of the clay sediments, shales, will
depend on their mineralogy, and on the temperature, pres-
sure, and composition of the surrounding environment.
Simulations studies are particularly adept considering their
applicability to mimic in situ environments which otherwise
are difficult to reproduce experimentally.

The characteristics and behavior of Ca-montmoril-
onite at low depths have not been described. In the present
study, the stability and swelling of Wyoming-type Ca-mont-
morillonite are investigated by Monte Carlo simulations at
constant stress in the isobaric-isothermal NPVT ensemble
and at constant chemical potential in the grand canonical
μVT ensemble, at the basin conditions of 333–353 K and
300–625 bar.
METHODOLOGY

The hydration of Ca-saturated montmorillonite is studied by Monte Carlo simulation in the NPVT and μVT ensembles (Allen and Tildesley, 1987), at environments of 333 K and 300 bar existing at 2 km depth in normally compacted sediments, and of 353 K and 625 bar prevailing at 2.7 km depth of over-compacted sediments (geotherms at the Gulf of Mexico, geothermal gradient of 30 °C/km, geostatic gradient 150 bar/km, Howet et al., 1976).

The simulations employ the model and approach described by Chávez-Páez et al. (2001a, 2001b). The clay considered is the Ca-saturated Wyoming-type montmorillonite of unit cell (Si$_4$Ti$_{4.86}$)(Al$_{1.35}$Mg$_{0.65}$)O$_{20}$·(OH)$_4$Ca$_{0.375}$nH$_2$O and charge of 0.75, 33% of which is in the tetrahedral sheet. Eight unit cells form the 320-atoms simulation cell, measuring 21.12 Å in the x-dimension, 18.28 Å in the y-dimension, and 6.56 Å in the z-dimension. The positions and charges of the atoms in the unit cell are those of pyrophyllite (Skipper et al., 1995a), with substitution in the simulation cell of octahedral Al$^{3+}$ in positions (-3.52, -3.05, 0), (7.04, -3.05, 0), (-3.52, 6.09, 0), and (7.04, 6.09, 0) by Mg$^{2+}$ and tetrahedral Si$^{4+}$ in positions (2.64, 1.52, 2.73) and (0.88, 1.52, -2.73) by Al$^{3+}$.

The total interaction energy between atoms is defined by Equation 1, which includes the Coulomb attraction–repulsion energy and the Lennard-Jones and van der Waals dispersion energy. Chávez-Páez et al. (2001a, 2001b) simulated the interaction energy from Equation 2, which combines the model of Skipper et al. (1995a, 1995b) for the clay–water system and the TIP4P water model of Jorgensen et al. (1983). In Equation 2, the first term of the summation represents the Coulomb attraction–repulsion contribution to the total energy of interaction whereas the remaining terms correspond to the Lennard-Jones dispersion contribution, m_i and m, are the number of sites in molecules i and j, q_i is the charge at site a of molecule i, q_b is the charge at site b of molecule j, r_{ijab} is the distance between atom a in molecule i and atom b in molecule j. The parameters A, B, C, D, E, F, and G are site specific parameters developed for the interaction between calcium and TIP4P water. In the present case the parameters of Bounds (1985) (Table 1) are used.

$$U_{ij} = U_{ij}^{\text{Coul}} + U_{ij}^{\text{LJ}}$$

$$U_{ij} = \frac{q_{ia} \cdot q_{jb}}{r_{ijab}} - A_{ijab} \cdot \frac{e^{-B_{ijab} \cdot r_{ijab}}}{(r_{ijab})^6} + C_{ijab} \cdot \frac{e^{-D_{ijab} \cdot r_{ijab}}}{(r_{ijab})^4} + E_{ijab} \cdot \frac{F_{ijab}}{(r_{ijab})^{12}} - G_{ijab} \cdot \frac{F_{ijab}}{(r_{ijab})^6} + H_{ijab} \cdot \frac{F_{ijab}}{(r_{ijab})^4}$$

(1)

(2)

In constant stress simulation, $NP_{\tau \nu T}$, the stress P_m normal to the clay surface, the temperature T, and the number of molecules N are kept constant. The system is allowed to sample the configuration space through molecular displacements and volume fluctuations. Volume fluctuations are allowed only in the direction normal to the clay surface. The acceptance probability of a new configuration n generated from a configuration m by displacing an atom or by changing the volume of the simulation box is given by Equation 3.

$$P_{acc} = \min \left(1, \exp \left(-\beta \left(\Delta U_{nm} + P_m \cdot \Delta V_{nm} - \frac{N}{\beta} \cdot \ln \left(\frac{V_n}{V_m} \right) \right) \right) \right)$$

(3)

ΔU_{nm} is the difference in energy between the two configurations, ΔV_{nm} is the difference in volume, and V_n and V_m are the corresponding volumes, $\beta = k_bT$ is the inverse temperature, k_b is Boltzmann’s constant and T is the absolute temperature.

In the grand canonical ensemble, μVT, chemical potential, volume, and temperature are kept constant. The system samples the configuration space through molecular displacements and concentration fluctuations. However, due to the high densities that water can reach in the clay interlayer, sampling can be inefficient and a biasing technique has to be implemented to improve sampling. It is achieved by implementing a rotational-bias insertion method, were a water molecule is inserted randomly in the system and the deletion of water molecules is accepted with probability

$$P_{acc} = \min \left(1, \exp \left(-\beta \left(\Delta U_{nm} \cdot \ln \left(\frac{N}{zV} \right) + \frac{1}{\beta} \cdot \ln(kP_m) \right) \right) \right)$$

(4)

and deletion of water molecules is accepted with probability

$$P_{acc} = \min \left(1, \exp \left(-\beta \left(\Delta U_{nm} \cdot \ln \left(\frac{N}{zV} \right) - \frac{1}{\beta} \cdot \ln(kP_m) \right) \right) \right)$$

(5)

ΔU_{nm} is, like ΔU_{nm} in Equation 3, the energy difference between the two configurations, P_m is the probability of selecting the jth orientation from k randomly generated
portions; $z = \exp(\beta \mu)/\Lambda^3$ is the activity, Λ is the thermal length of the molecule, and μ is the chemical potential of bulk water (Allen and Tildesley, 1987; Chávez-Páez et al., 2001a, 2001b).

We simulate the water–calcium interaction applying the TIP4P water model of Jorgensen et al. (1983) and the parameters of Bounds (1985) (Table 1). At 300 K and 333 bar and at 353 K and 625 bar, we prefer the TIP4P model because its influence on the density or the energy does not appear significant, and by doing so our results can be compared with those known previously on Ca-saturated montmorillonite under the surface ambient environment (Boek et al., 1995; Chávez-Páez et al., 2001a). The water–clay and clay–calcium interactions are neglected. The simulations required 2×10^6 Monte Carlo steps for equilibration and, after the equilibration period, simulations proceeded for additional 2×10^6 Monte Carlo steps, until the statistics was satisfactory and smooth calculated functions developed.

RESULTS AND DISCUSSION

NP$_z$T simulations

Simulations in the NP$_z$T ensemble at constant mass, pressure, and temperature indicate that at the basin conditions of 353 K and 625 bar the adsorption of 32 water molecules per layer of Ca-montmorillonite (98 mg/g of clay) results in the formation of the one-layer hydrate of d_{001} spacing 11.83 Å (Table 2). The water molecules are clustered on the interlayer midplane, tilted with their hydrogen atoms oriented towards the siloxane surfaces on both sides and to the midplane (Table 2, Figure 1a). The Ca$^{2+}$ ions are on the interlayer midplane solvated in outer-sphere complexes, but some are closer to the clay surface. A distance of 1.624 Å separates the outmost proton layers. The configuration is illustrated in the snapshot of Figure 2a.

The adsorption of 64 molecules (196 mg/g) increases the d_{001} spacing to 13.73 Å, placing the water molecules in two well-defined layers, one to each side of the interlayer midplane, 1.899 Å apart (Table 2, Figure 1b). The water protons are distributed over four layers, two outmost ones, 3.449 Å apart, and two closer to the central plane. Ca$^{2+}$ ions are solvated in both layers of water, slightly off the oxygen atoms; none are midway between the two layers of water, nor are they closer to the clay surface or in inner-sphere coordination with the siloxane oxygens (Figure 2b). At higher contents of water, namely 96 molecules (294 mg/g), the spacing increases to 15.60 Å, preserving the 2-layer configuration with the water molecules separated 3.524 Å, the outmost protons 5.399 Å apart, and minor excess water molecules located about the interlayer midplane (Table 2, Figure 1c). The Ca$^{2+}$ ions are on the interlayer midplane and in-between the two water layers, with few atoms closer to the siloxane surface.

The results indicate that, at 353 K and 625 bar, the adsorption of 32, 64, and 96 water molecules places the molecules respectively at 0.012, 0.912–0.987, and 1.787–1.737 Å from the interlayer midplane. The interlayer configuration changes from one-layer when adsorption is between 32 and near 64 water molecules to two-layer when increased to 64–96 molecules. The Ca$^{2+}$ ions are essentially in outer-sphere complexes in the water layers, symmetrical to the protons and slightly off the oxygen atoms.

At 333 K and 300 bar, prevailing at 2 km depth, the adsorption of 50 water molecules develops a one-layer hydrate of d_{001} spacing 12.11 Å, higher than that formed at 353 K and 625 bar. It has water molecules off the interlayer midplane, closer to the clay surface (Table 2). Its snapshot (Figure 2c) illustrates a bulkier interlayer relative to that at 353 K when 32 molecules were adsorbed (Figure 2a).

Our simulated d_{001} spacing of 11.83 and 12.11 Å for the one-layer hydrates at 353 K and 625 bar and at 333 K and 300 bar are within the range of 11.19–12.45 Å known from experimental studies (McEwan and Wilson, 1980; Bray and Redfern, 1999, 2000) and are shorter than the 12.20 Å simulated for Ca-montmorillonite under surface conditions of 300 K and 1 bar (Laird et al., 1995; Laird, 1996; Chávez-Páez et al., 2001a) (Table 3). The simulated

Table 2. Monte Carlo simulation of hydrated Ca-montmorillonite, NP$_z$T ensemble.

<table>
<thead>
<tr>
<th>Simulation</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (K)</td>
<td>353</td>
<td>353</td>
<td>353</td>
<td>333</td>
</tr>
<tr>
<td>Pressure (bar)</td>
<td>625</td>
<td>625</td>
<td>625</td>
<td>300</td>
</tr>
<tr>
<td>Clay layers</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Ca (atoms/cell)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Water (molecules/cell)</td>
<td>32</td>
<td>64</td>
<td>96</td>
<td>50</td>
</tr>
<tr>
<td>Water (mg/g clay)</td>
<td>98</td>
<td>196</td>
<td>294</td>
<td>153</td>
</tr>
<tr>
<td>d_{001} spacing (Å)</td>
<td>11.83</td>
<td>13.73</td>
<td>15.60</td>
<td>12.11</td>
</tr>
<tr>
<td>Density (g/ml)</td>
<td>0.21</td>
<td>0.36</td>
<td>0.47</td>
<td>0.32</td>
</tr>
<tr>
<td>Energy interaction (kcal/mol)</td>
<td>-24.245</td>
<td>-19.664</td>
<td>-17.714</td>
<td>-23.36</td>
</tr>
<tr>
<td>Energy Coulomb (kcal/mol)</td>
<td>1.415</td>
<td>-6.679</td>
<td>-10.137</td>
<td>-4.75</td>
</tr>
<tr>
<td>r_{OO} 1st coordination shell (Å)</td>
<td>2.775</td>
<td>2.815</td>
<td>3.415</td>
<td>2.775</td>
</tr>
<tr>
<td>$g(r)$ coordination probability</td>
<td>10.026</td>
<td>7.441</td>
<td>9.062</td>
<td>7.441</td>
</tr>
<tr>
<td>r_{OO} 2nd coordination shell (Å)</td>
<td>4.715</td>
<td>4.715</td>
<td>4.665</td>
<td>4.665</td>
</tr>
<tr>
<td>$g(r)$ coordination probability</td>
<td>1.804</td>
<td>1.710</td>
<td>1.432</td>
<td>1.432</td>
</tr>
<tr>
<td>Water (layers/cell)</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>O$^-$ distance to midplane (Å)</td>
<td>-0.012</td>
<td>-0.912</td>
<td>-1.787</td>
<td>0.012</td>
</tr>
<tr>
<td>O$^-$ outmost distance (Å)</td>
<td>0</td>
<td>1.899</td>
<td>3.524</td>
<td>0.912</td>
</tr>
<tr>
<td>H$^+$ distance to midplane (Å)</td>
<td>-0.812</td>
<td>-1.712</td>
<td>-2.687</td>
<td>-0.963</td>
</tr>
<tr>
<td>H$^+$ outmost distance (Å)</td>
<td>1.624</td>
<td>3.449</td>
<td>5.399</td>
<td>1.899</td>
</tr>
<tr>
<td>Ca$^{2+}$ distance to midplane (Å)</td>
<td>-0.012</td>
<td>-1.087</td>
<td>-2.062</td>
<td>-0.086</td>
</tr>
<tr>
<td>Ca$^{2+}$ outmost distance (Å)</td>
<td>0.787</td>
<td>1.137</td>
<td>0.662</td>
<td>0.662</td>
</tr>
</tbody>
</table>

The results indicate that, at 353 K and 625 bar, the adsorption of 32, 64, and 96 water molecules places the molecules respectively at 0.012, 0.912–0.987, and 1.787–1.737 Å from the interlayer midplane. The interlayer configuration changes from one-layer when adsorption is between 32 and near 64 water molecules to two-layer when increased to 64–96 molecules. The Ca$^{2+}$ ions are essentially in outer-sphere complexes in the water layers, symmetrical to the protons and slightly off the oxygen atoms. At 333 K and 300 bar, prevailing at 2 km depth, the adsorption of 50 water molecules develops a one-layer hydrate of d_{001} spacing 12.11 Å, higher than that formed at 353 K and 625 bar. It has water molecules off the interlayer midplane, closer to the clay surface (Table 2). Its snapshot (Figure 2c) illustrates a bulkier interlayer relative to that at 353 K when 32 molecules were adsorbed (Figure 2a).

Our simulated d_{001} spacing of 11.83 and 12.11 Å for the one-layer hydrates at 353 K and 625 bar and at 333 K and 300 bar are within the range of 11.19–12.45 Å known from experimental studies (McEwan and Wilson, 1980; Bray and Redfern, 1999, 2000) and are shorter than the 12.20 Å simulated for Ca-montmorillonite under surface conditions of 300 K and 1 bar (Laird et al., 1995; Laird, 1996; Chávez-Páez et al., 2001a) (Table 3). The simulated
15.60 Å spacing limiting the two-layer hydrate, with 96 adsorbed molecules of water, compares with the experimental 15.0–15.8 Å (Posner and Quirk, 1964; Keren and Shainberg, 1975; Sato et al., 1992; Bray et al., 1998), the 15.0 Å measured at 260–300 K and 48–7075 bar (Wu et al., 1997), and the 14.7 Å (Chávez-Páez et al., 2001a) known from simulations at 300 K and 1 bar. The reported three-layer hydrates of 18.50–19.10 Å spacing (Posner and Quirk, 1964; Suquet et al., 1975; Sato et al., 1992; Wu et al., 1997; Chávez-Páez et al., 2001a) were not simulated in the present work.

The radial distribution function \(g(r) \) shows for the one-layer Ca-montmorillonite hydrate a coordination probability of 10.026 molecules of water per cation, at a Ca–O separation of 2.775 Å (Table 2, Figures 3a and 3b). Increasing the adsorption to the two-layer hydrate state raises the separation to 2.815 Å and reduces the probability to 7.441. When
temperature and pressure are decreased to 333 K and 300 bar, the probability is 7.906 with the r_{CaO} distance remaining at 2.775 Å. Integration of $g(r)$ as per Equation 6 (Allen and Tildesley, 1987) indicates solvation of the cation by 10 water molecules, which is within the 9–10 range known for the calcium–water system (Bounds, 1985).

$$N_{\text{CaO}} = 4 \cdot \pi \cdot \frac{N_{\text{O}}}{V} \int_{0}^{r_{\text{CaO}}} g_{\text{CaO}}(r) \cdot r^2 dr \quad (6)$$

The progressive hydration of Ca-montmorillonite increases the d_{001} spacing and the separation of the water layers from the interlayer midplane (Table 2, Figure 4a). The energy of interaction between atoms increases in the order -24.245, -19.664, and -17.714 kcal/mol as the adsorbed H$_2$O changes from 32 to 96 molecules (Table 2, Figure 4b). The Coulomb energy decreases from 1.415 to -6.679 and -10.137 kcal/mol, inverse to the Lennard-Jones energy that increases to -26.369, -13.167, and -7.648 kcal/mol. The total interaction energy is lower for Ca-montmorillonite in the 333 K, 300 bar environment.

Grand canonical μVT simulations

To ascertain the thermodynamic stability of hydrated Ca-montmorillonite, simulations were conducted in the grand canonical μVT constant mass, volume and temperature ensemble. The simulations started by calculating the chemical potentials of bulk water for a system of 216 water molecules (Chávez-Páez et al., 2001a, 2001b) at 353 K and 625 bar and at 333 K and 300 bar. For the former, the

![Figure 3](image_url)

Figure 3. Radial distribution function ($g(r)$) of hydrated Ca-montmorillonite at: a) 353 K and 625 bar, 32 (solid line) and 64 adsorbed water molecules; b) at 333 K and 300 bar, 50 water molecules.
simulated chemical potential was of -5.58 kcal/mol and for the latter -7.21 kcal/mol.

Simulations in the grand canonical ensemble define the stability of the clay mineral when the chemical potentials in the mineral interlayer and of the bulk supernatant fluid are equal. The thermodynamic stability of the Ca-montmorillonite hydrates is determined from the minima in the swelling free energy as a function of the interlayer separation (Chávez-Páez et al., 2001a, 2001b). The free energy is calculated from Equation 7 where P_{zz} is the interlayer pressure tensor and $(P_{zz})_{npp}$ is the normal external bulk pressure. The derivative of this expression defines the stable d_{001} spacing when the calculated pressure tensor P_{zz} equals the bulk pressure on the clay. Values of P_{zz} distinct from the bulk pressure do not represent real solutions and lack any physical meaning; opposite assumptions would lead to collapse or blow the clay structure. A simple graphical solution is a plot depicting the dependence of P_{zz} on the d_{001} spacing.

$$\Delta E(z) = -L_x \cdot L_y \cdot \int_{z_0}^{z} [P_{zz}(s) - (P_{zz})_{npp}] dz \quad (7)$$

Simulations using the TIP4P water model (Jorgensen et al., 1983) show that for d_{001} spacings between 11.5 and 18 Å, the adsorbed water increases from 39.27 to 140.40 molecules per layer or 120.36 to 430.33 mg/g (Table 4, Figure 5a), the total energy changes from -22.871 kcal/mol to -150.86–316.53 mg water/g, d_{001} spacing of 12.0–16.0 Å, energy of interaction -23.549 – -19.110 kcal/mol, Lennard-Jones energy -18.118 – -11.396, Coulomb energy -5.647 – -7.564 kcal/mol, and pressure tensor from 10654.69 – 2532.54 bar. The Lennard-Jones and Coulomb energies add to the total energy of interaction; the values presented in Tables 2 and 4 do not do exactly add, due to some mishandling of the data outputs.

The variation of the pressure tensor P_{zz} with the adsorbed water depicts the path shown in Figure 6. At 353 K and 625 bar, the data in Figure 6a show that within the statistical uncertainty associated with Monte Carlo simulations, the one-layer hydrate Ca-montmorillonite approaches stability, without attain it. In the less deep environment of 333 K and 300 bar, the one-layer hydrate is stable (Figure 6b), characterized by a d_{001} spacing of 12.11 Å. Two- and three-layer hydrates do not form.

At 353 K and 625 bar, the nearly stable one-layer Ca-montmorillonite hydrate has a d_{001} spacing of 12.50 Å, formed by the adsorption of 55.21 water molecules (169.22 mg H$_2$O/g clay), total interaction energy -21.107 kcal/mol, and interlayer density 0.342 g/mL. At 333 K and 300 bar, the stable one-layer hydrate has d_{001} 12.11 Å, adsorbs 54.50 molecules of water, interaction energy -22.803 kcal/mol, Lennard-Jones dispersion -6.345 kcal/mol, Coulomb attraction–repulsion -16.449 kcal/mol, density 0.337 g/mL. The density profiles (Figure 7) show that at 353 K and 625 bar the water molecules cluster in a broad band 0.087 Å off the interlayer midplane, with protons on the midplane and 1.087 Å and 1.137 Å to each side, and the calcium cations off the midplane, solvated in outer-sphere complexes within the water layer. At 333 K and 300 bar, the density profiles

Figure 4. Hydration of Ca-montmorillonite, NP$_{zz}$T ensemble, at 353 K and 625 bar. a) Change of d_{001} (o), H$^+$ outmost separation (∆), O$^-$ separation (□). b) Variation of the energy (o), Coulomb contribution (∆), and Lennard-Jones contribution (□). Small circles represent the same variables at 333 K and 300 bar.
indicate that the water molecules are on the interlayer mid-plane, oriented to both siloxane surfaces, with the protons 1.112 and 1.137 Å to both sides, slightly farther apart than at 353 K and 625 bar; the calcium atoms are solvated off the interlayer midplane. Snapshots of both hydrates (Figures 8a and 8b) show a broad layer of water molecules with the cations coordinated in the water layer, away from the siloxane surface.

Our simulations in the NP \(\mu \)T ensemble show that Ca-montmorillonite can form one-, two- and three-layer hydrates. Simulations in the \(\mu \)VT ensemble confirm that in normally compacted sediments at 2.0 km depth, 333 K and 300 bar, one-layer Ca-montmorillonite hydrate is stable but two- and three-layer hydrates do not form. At 353 K and 625 bar, mimicking over-compacted sediments at 2.7 km depth, the one-layer hydrate is nearly stable, not attaining full stability. In this environment, the unstable clay could transform to other minerals, adsorb or release species to the surrounding environment to develop a stable configuration. The simulations point that Ca-montmorillonite could be stable at 353 K and 625 bar and possibly even under more stringent environments, if sediments were normally compacted or potentials more suitable.

Our results extend the stability of the one-layer Ca-montmorillonite hydrate to 2.0 km depth and probably higher, upwards from previous investigations limiting its stability to burial depths of 1.5 km, with possible conversion to other minerals in deeper environments (Siqueira et al., 1997). The present simulations did not reach the high temperature and pressure of 513 K and 1200 bar (Siqueira et al., 1999) and above (Wu et al., 1997) experimentally determined for the stability of the 18–19 Å 3-layer hydrate and of 260–310 °C and 48–260 bar along the 0.7 g/mL isochore (Wu et al., 1997) and of 453 K and 900 bar (Siqueira et al., 1999) determined for its transformation to the 15 Å two-layer hydrate. Recent data from de Pablo et al. (2005) have confirmed that one-layer Ca-montmorillonite is stable down to 8.7 km in normally compacted sediments; two- and possibly three-layer hydrates develop at 6.7 km depth, 473 K and 1000 bar. Na- and K-montmorillonite form in similar environments one- and two-layer hydrates of \(d_{001} \) spacing larger than Ca-montmorillonite.

SUMMARY

Monte Carlo simulations on the hydration of Ca-montmorillonite under basin-like conditions of 353 K and 625 bar and of 333 K and 300 bar reveal interlayer configurations similar to those known at the surface ambient environment of 300 K and 1 bar. At low states of hydration, the water molecules cluster on the interlayer midplane with their protons alternatively oriented towards the siloxane surfaces and on the interlayer midplane. At higher states of adsorption, the water molecules are distributed in two separate layers close to the clay surfaces, with the molecules tilted...
Table 4. Monte Carlo simulation of hydrated Ca-montmorillonite, \(\mu\)VT ensemble, at 353 K and 625 bar.

<table>
<thead>
<tr>
<th>Simulation</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (K)</td>
<td>353</td>
<td>353</td>
<td>353</td>
<td>353</td>
<td>353</td>
<td>353</td>
<td>353</td>
<td>353</td>
<td>353</td>
</tr>
<tr>
<td>Pressure (bar)</td>
<td>625</td>
<td>625</td>
<td>625</td>
<td>625</td>
<td>625</td>
<td>625</td>
<td>625</td>
<td>625</td>
<td>625</td>
</tr>
<tr>
<td>Clay layers</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Ca (atom/layer)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Water adsorbed (molecule/layer)</td>
<td>39.27</td>
<td>51.7</td>
<td>55.21</td>
<td>61.36</td>
<td>80.02</td>
<td>93.03</td>
<td>108.52</td>
<td>124.31</td>
<td>140.4</td>
</tr>
<tr>
<td>Water adsorbed (mg/g)</td>
<td>120.36</td>
<td>158.46</td>
<td>169.22</td>
<td>188.07</td>
<td>245.26</td>
<td>285.14</td>
<td>332.61</td>
<td>381.01</td>
<td>430.33</td>
</tr>
<tr>
<td>Spacing (Å)</td>
<td>11.5</td>
<td>12</td>
<td>12.5</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>Density (g/ml)</td>
<td>0.264</td>
<td>0.207</td>
<td>0.342</td>
<td>0.365</td>
<td>0.442</td>
<td>0.48</td>
<td>0.525</td>
<td>0.566</td>
<td>0.604</td>
</tr>
<tr>
<td>Energy Coulomb (kcal/mol)</td>
<td>-0.601</td>
<td>-4.726</td>
<td>-6.324</td>
<td>-9.539</td>
<td>-10.613</td>
<td>-10.653</td>
<td>-11.66</td>
<td>-12.358</td>
<td></td>
</tr>
<tr>
<td>Pressure tensor Pzz (bar)</td>
<td>24519.7</td>
<td>2001.9</td>
<td>1086.8</td>
<td>6322.2</td>
<td>7444.2</td>
<td>4080.6</td>
<td>4828.5</td>
<td>4347.7</td>
<td>5376.6</td>
</tr>
</tbody>
</table>

Table 5. Monte Carlo simulation of hydrated Ca-montmorillonite, \(\mu\)VT ensemble, at 333 K and 300 bar.

<table>
<thead>
<tr>
<th>Simulation</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (K)</td>
<td>333</td>
<td>333</td>
<td>333</td>
<td>333</td>
<td>333</td>
<td>333</td>
<td>333</td>
<td>333</td>
</tr>
<tr>
<td>Pressure (bar)</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Clay layers</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Ca (atom/layer)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Water adsorbed (molecule/layer)</td>
<td>49.3</td>
<td>54.49</td>
<td>59.92</td>
<td>75.65</td>
<td>85.55</td>
<td>92.2</td>
<td>103.44</td>
<td>104.4</td>
</tr>
<tr>
<td>Water adsorbed (mg/g)</td>
<td>150.86</td>
<td>166.55</td>
<td>183.35</td>
<td>231.49</td>
<td>261.78</td>
<td>282.13</td>
<td>298.23</td>
<td>316.53</td>
</tr>
<tr>
<td>Spacing (Å)</td>
<td>12</td>
<td>12.5</td>
<td>13</td>
<td>14</td>
<td>14.5</td>
<td>15</td>
<td>15.5</td>
<td>16</td>
</tr>
<tr>
<td>Density (g/ml)</td>
<td>0.318</td>
<td>0.337</td>
<td>0.356</td>
<td>0.418</td>
<td>0.457</td>
<td>0.476</td>
<td>0.487</td>
<td>0.5</td>
</tr>
<tr>
<td>Pressure tensor Pzz (bar)</td>
<td>106546.9</td>
<td>-67.184</td>
<td>4179.982</td>
<td>5598.457</td>
<td>4137.781</td>
<td>2203.39</td>
<td>2539.388</td>
<td>2532.541</td>
</tr>
<tr>
<td>rCaO first coordination shell (Å)</td>
<td>2.725</td>
<td>...</td>
<td>...</td>
<td>2.775</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>rCaO second coordination shell (Å)</td>
<td>5.515</td>
<td>...</td>
<td>...</td>
<td>5.505</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Water O2- distance to midplane (Å)</td>
<td>0.012</td>
<td>...</td>
<td>-1.812</td>
<td>-1.612</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Water H+ distance to midplane (Å)</td>
<td>-0.762</td>
<td>-1.062</td>
<td>-0.012</td>
<td>1.192</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Ca2+ distance to midplane (Å)</td>
<td>0.562</td>
<td>-0.812</td>
<td>-0.512</td>
<td>1.137</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
so their protons point towards the siloxane surfaces and the interlayer midplane. The calcium ions form outer-sphere complexes in the water layers, always positioned off the interlayer midplane.

For the force field considered in this work, within the statistical error of Monte Carlo simulations, Ca-montmorillonite forms a 12.11 Å one-layer hydrate stable at 333 K and 300 bar, at a 2 km depth of normally compacted sediments. Two- and three-layer hydrates do not form. At 353 K and 625 bar, prevailing at 2.7 km depth of over-compacted sediments, the one-layer hydrate only approaches stability without quite reaching it. Under equal conditions of temperature, pressure, and chemical potential our previous simulations indicate that Na-montmorillonite is clearly stable (de Pablo et al., 2004) but K-montmorillonite may not (Chávez et al., 2004). A difference is established with clays under the ambient surface setting of 300 K and 1 bar where two- and three-layer hydrates are formed. The results imply that Ca-montmorillonite as well as Na- and K-montmorillonite may, at depth, loose water to their one-layer hydrates.
ACKNOWLEDGMENTS

The present study was supported by DGAPA, UNAM, Project IN106502. The authors thank DGSCA, UNAM, for extended allocation of their supercomputing resources. The Instituto Mexicano del Petroleo offered partial support.

REFERENCES

Bounds, D.G. 1985, A molecular dynamics study of the structure of water around the ions Li+, Na+, K+, Ca2+, Ni2+, and Cl−: Molecular Physics, 54, 1335-1355.

Chávez-Páez, M., de Pablo, L., de Pablo, J.I., 2001a, Monte Carlo simulations of Ca-montmorillonite hydrates: Journal of Chemical Physics, 114, 10948-10953.

Chávez-Páez, M., van Workum, K., de Pablo, L., de Pablo, J.I., 2001b, Monte Carlo simulations of sodium montmorillonite hydrates: Journal of Chemical Physics, 114, 1405-1413.

Laird, D.A., Shang, C., Thompson, M.L., 1995, Hysteresis in crystalline swelling of smectites: Journal Colloid Interface Science, 171,
240-245.

Manuscript received: May 10, 2005
Corrected manuscript received: October 4, 2005
Manuscript accepted: November 18, 2005