Abstract
Aspects of autochthonous maize breeding (AMB), reproductive biology, current status of recombinant DNA technology (RDNAT), and the Mexican Law of Biosafety of Genetically Modified Organisms are analyzed in order to infer on the consequences of the likely accumulation of transgenic DNA in the genomes of the more than 50 native races of maize, as a collateral effect of commercial release of genetically modified maize (GMM) in México. Differences between a first wave of GMM that was imported as grain from USA and a prospective second "wave" of GMM are discussed. Reproductive habits of maize that help the flow of new alleles into its populations as well as AMB practices that will enhance intercrossing between maize races and GMM are discussed. The lack of control of the insertion locus in commercial transformation of maize is a documented fact; hence, 50 independent transgenic events (ITE) available worldwide in the seed market are probably scattered throughout the chromosomal space. Such condition makes it possible that all ITE could be stacked into one plant genotype through sexual hybridization. Those independent events could potentially flow and accumulate in the more than 50 Mexican native races of maize. It is not known whether there is a threshold of irreversible damage beyond which the diversity of native maize is provoked; hence, the Precautionary Principle should prevail over any other type of consideration. We conclude that relevant research should be conducted and implications understood previous to any commercial release of GMM in México.

Keywords
Autochthonous maize breeding, independent transgenic events, resident DNA.