Bautista Baños, Silvia; Barrera Necha, Laura Leticia; Bravo Luna, Leticia; Bermúdez Torres, Kalina
Antifungal Activity of Leaf and Stem Extracts from various Plant Species on the Incidence of
Colletotrichum gloeosporioides of Papaya and Mango Fruit after Storage
Revista Mexicana de Fitopatología, vol. 20, núm. 1, enero-junio, 2002, pp. 8-12
Sociedad Mexicana de Fitopatología, A.C.
Texcoco, México

Available in: http://www.redalyc.org/articulo.oa?id=61220102
Antifungal Activity of Leaf and Stem Extracts from Various Plant Species on the Incidence of *Colletotrichum gloeosporioides* of Papaya and Mango Fruit After Storage

Correspondence to: sbautis@ipn.mx

(Received: October 11, 2001 Accepted: November 29, 2001)

Abstract

Aqueous extracts of leaves and stems of *Achras sapota*, *Annona reticulata*, *Bromelia hemisphaerica*, *Carica papaya*, *Citrus limon*, *Chrysophyllum cainito*, *Dyospiros ebenaster*, *Mangifera indica*, *Persea americana*, *Pouteria sapota*, *Spondias purpurea*, and *Tamarindus indica* from the state of Morelos, Mexico were tested for their antifungal activity against *Colletotrichum gloeosporioides* in *in vitro* and *in vivo* experiments. Papaya and mango fruit were dipped in extracts, inoculated with *C. gloeosporioides*, and stored for seven days at room temperature to evaluate percentage infection and severity, solid solubles concentration (SSC), and fruit mass loss. Differences were found between the inhibitory effects *in vitro* and *in vivo*. Leaf extracts from *C. limon* and *P. americana* totally inhibited growth of *C. gloeosporioides* *in vitro*. Leaf extracts of *C. papaya* completely inhibited postharvest rots of papaya, while leaf and stem extracts of *D. ebenaster* had an adequate fungicidal effect when applied to mango. Infection severity of papaya ranged from 0 to 50% of the fruit surface, while in mango only 25% of the surface was affected. Overall, infection severity was reduced for both papaya and mango when dipped in extracts. SSC and fruit mass loss varied among plant extracts; however, extracts did not affect fruit quality during storage.

Additional keywords: plant extracts, *Carica papaya*, *Mangifera indica*.

Resumen. Se probó la capacidad antifúngica de extractos acuosos de hojas y tallos de *Achras sapota*, *Annona reticulata*, *Bromelia hemisphaerica*, *Carica papaya*, *Citrus limon*, *Chrysophyllum cainito*, *Dyospiros ebenaster*, *Mangifera indica*, *Persea americana*, *Pouteria sapota*, *Spondias purpurea* y *Tamarindus indica*, del estado de Morelos, México en el control de *Colletotrichum gloeosporioides* tanto en estudios *in vitro* como *in vivo*. Frutos de papaya y mango, se sumergieron en los extractos, se inocularon con *C. gloeosporioides* y se almacenaron durante siete días a temperatura ambiente. Se evaluó el porcentaje de infección y severidad de la enfermedad, el contenido de sólidos solubles totales (SSST) y la pérdida de masa. Se observaron diferencias en el efecto inhibitorio entre los estudios *in vitro* e *in vivo*.

Los extractos de hojas de *C. limon* y *P. americana* inhibieron completamente el desarrollo de *C. gloeosporioides* *in vitro*. Los extractos de las hojas de *C. papaya* inhibieron completamente las pudriciones en fruto de la papaya, mientras que los extractos de las hojas y los tallos de *D. ebenaster* tuvieron un efecto fungicida adecuado en mango. La severidad de la infección en papaya varió de 0 a 50%, mientras que en mango sólo abarcó el 25% de la superficie de la fruta. En general, la severidad de la infección en papayas y mangos se redujo cuando se lavaron en los extractos. El contenido de SSST y la pérdida de masa varió entre los extractos aplicados. Sin embargo los extractos no afectaron la calidad durante el almacenamiento.

Palabras clave adicionales: extractos de plantas, *Carica papaya*, *Mangifera indica*.

There is an increasing demand for papaya (*Carica papaya* L.) and mango (*Mangifera indica* L.) fruit in the National and International markets. However, postharvest rots pose one of the biggest problems to commercialize high quality fruit. Anthracnose caused by *Colletotrichum gloeosporioides* [(Penz.) Penz. and Sacc.] is an important disease of these fruits (Alvarez et al., 1987; Snowdon, 1990). For many years, growers and export industries have relied heavily on synthetic fungicides to control anthracnose. However, there is a need to explore alternatives to reduce this important disease as pathogens develop resistance to fungicides, as evidenced on papayas during the last harvest season (Personnal communication: growers). Also, a continuous loss of chemicals has occurred through regulatory actions. Numerous
studies have demonstrated the fungicidal potential of plant extracts against postharvest fungi. Studies on the inhibitory effects of a diversity of extracts to control fungi such as *Botrytis cinerea*, *Glomerella cingulata*, *Penicillium expansum*, *C. gloeosporioides*, *Phomopsis mangiferae*, *Rhizopus stolonifer*, *Pestalotia psidii* and others, have proved the fungicidal potential of extracts (Bautista et al., 2000; Bommarito et al., 1998; Bong et al., 1997; Mohamed et al., 1996; Pandey et al., 1983; Wilson et al., 1997). In these studies growth of the pathogens were affected at some stage in their development (mycelial growth, sporulation, or conidial germination). The state of Morelos, Mexico is rich in botanical biodiversity. The potential value of plant extracts as fungicides prompted this investigation. The objective of our study was to determine the fungicidal effects of various plant extracts on the growth of *C. gloeosporioides in vitro* and to determine their activity on papaya and mango fruit and, evaluating some fruit quality parameters after storage.

MATERIALS AND METHODS

Plant pathogen. *C. gloeosporioides* was isolated from infected papaya or mango fruit and identified according to Barnett and Hunter (1972). Each stock culture was maintained on potato-dextrose-agar (PDA).

Plant material. For *in vitro* experiments, leaves and stems of *Achras sapota* L. (sapodilla), *Annona reticulata* L. (custard apple), *Carica papaya* L. (papaya), *Citrus limon* L. (lemon), *Dyospiros ebenaster* Retz. (black sapote), *Mangifera indica* L. (mango), *Persea americana* Mill. (avocado), *Pouteria sapota* (Jacq.) H.E. Moore and Stearn (sapote mamey), *Spondias purpurea* L. (red-mombin), and *Tamarindus indica* L. (tamarind) were collected in the state of Morelos, Mexico. For *in vivo* experiments, besides the above plant material mentioned, leaves of *Bromelia hemisphaerica* L. (‘timbiriche’) and leaves and stems of *Chrysophyllum cainito* L. (star apple) were also collected. All plant materials were rinsed with distilled water, air-dried, macerated and stored in amber bottles until further use.

Preparation of extracts. For *in vitro* or *in vivo* studies, extracts were prepared as follows: Aqueous extracts (2:10 w/v) were left at room temperature (25-28°C) for 24 h and vacuum filtered and sterilized. For *in vitro* studies, extracts were incorporated (10:4 v/v) and mixed with Potato Dextrose Agar (PDA) and then autoclaved (Ahmad and Prasad 1995). The pH of each extract was measured before sterilization (pH meter Orion, Model 420A).

Parameters evaluated for *in vitro* studies. Mycelial inhibition was expressed as the percentage of inhibition of radial growth relative to the control. For *in vitro* studies, extract incorporation (10:4 v/v) and mixed with Potato Dextrose Agar (PDA) and then autoclaved (Ahmad and Prasad 1995). The pH of each extract was measured before sterilization (pH meter Orion, Model 420A).

Parameters evaluated for *in vivo* experiments. Mycelial inhibition was expressed as the percentage of inhibition of radial growth relative to the control. For *in vitro* studies, extract incorporation (10:4 v/v) and mixed with Potato Dextrose Agar (PDA) and then autoclaved (Ahmad and Prasad 1995). The pH of each extract was measured before sterilization (pH meter Orion, Model 420A).

Statistical analysis. Treatments were arranged in a completely randomized design. Means separation by Tukey’s multiple range test (P = 0.05) were carried out for experiments on leaf or stem extracts for the parameters of growth inhibition, sporulation and conidia germination, weight loss and SSC. Percentage disease was analysed using the Chi square procedure. Disease severity was ranked 1 to 5 where 1 = 0% of surface fruit rotten, 2 = 1-25%, 3 = 26-50%, 4 = 51-75%, and 5 = 76-100%.

RESULTS

In vitro experiments. Leaf extracts of *C. limon* and *P. americana* completely inhibited the *in vitro* radial growth of *C. gloeosporioides* while leaf and stem extracts of *C. papaya*, *D. ebenaster*, *M. indica*, *P. sapota* and *S. purpurea* totally inhibited sporulation. Leaf extracts of *C. limon* and *T. indicus* and stem extracts of *M. indica* significantly reduced (P = 0.05) conidial germination (Table 1). Sporulation, parameter affected most by extracts, did not occur in extracts with pH values from 4.6 to 6.6, while significantly less mycelial growth (expressed as percentage inhibition) and germination were observed with a range of pH values of 5.3 to 5.6.

In vivo experiments. In papaya, percentage infection was significantly different (P = 0.001) only when when fruit was...
dipped with leaf extracts. No infection was observed in fruit treated with extracts of C. papaya while only 20% infection was observed in fruit treated with leaves of P. sapota. Percentage infection of fruit treated with extracts of leaves of A. sapota and C. caimito was 44% or less, i.e. half of that of untreated fruit (89%) (Table 2). In mango, extracts that significantly (P = 0.001) reduced infection to 10% were those obtained from stems of A. reticulata, D. ebenaster, and T. indicus while stem extracts from C. papaya and C. limon and leaf extracts of D. ebenaster reduced percentage infection to 20% (Table 3). For the treated papaya, infection spread over 0 to 50% of the fruit surface, compared with 75% in the control, while in treated mango only 25% of the fruit surface was infected. SSC and mass loss of papaya and mango varied among extracts. Significant differences (P = 0.05) in SSC and mass loss were observed in fruit treated with extracts obtained from leaves while no differences were found in fruit treated with stem extracts. For both papaya and mango fruit, the lowest SSC was in those fruit dipped in leaf extracts of S. purpurea. Mass loss of papaya fruit ranged from 6.3 to 9.7% (leaf and stem extracts of T. indicus) and 11.5% (leaf extracts of S. purpurea) to 16.8% (stems extracts of D. ebenaster) for mango.

DISCUSSION

In this study we identified extracts from several plant species that showed adequate antifungal activity on C. gloeosporioides, in vitro and in vivo. The effect was fungicidal or fungistatic and varied among leaf and stem extracts. The effect of foliar and stem extracts on the development of C. gloeosporioides varied for in vitro experiments compared to those carried out in vivo on papaya and mango fruit. However, leaf and stem extracts of C. limon had a significant effect on C. gloeosporioides development in vitro and on mango fruit respectively. Previous reports have demonstrated the fungicidal effects of extracts from fruit peel of C. limon (Misra et al., 1988). In this present study, extracts prepared from leaf and stems of papaya reduced anthracnose infection of papaya and mango, while in vitro studies extracts of C. papaya affected sporulation as well. In other studies, R. stolonifer sporulation and infection development of ciruela fruit did not take place when extract of leaf of C. papaya was applied (Bautista-Baños et al., 2000). The fungicidal activity of this plant on humans mycoses and plant diseases has been reported (Giordani et al., 1996). Among numerous components of papaya fruit it is likely that the alkaloid carpaine would be responsible for this effect (Head and Lauter, 1956). Extracts prepared from leaves and stems of D. ebenaster significantly reduced the percentage infection of mango and stopped sporulation of C. gloeosporioides in vitro. Although this plant species has not been reported with fungicidal properties, various plant organs of different species of the genus Dyospiros (D. piscatoria, D. mespiliformes, D. bateri and D. monbuthensis) have been reported to have a broad range of pharmacological effects on human diseases and insecticidal and termicidal effects (Adeniyi et al., 1996; 2000; Odelola and Okorosobo, 1988). Steroids, triterpenoids, and benzopirones are the main chemical components reported for D. ebenaster (Mallavadhani et al., 1998). In this study, other plant species with promising fungicidal or fungistatic effects were P. americana on in vitro studies, P. sapota, and A. sapota in papaya fruit and A. reticulata, and T. indicus in mango fruit. In this study, the infection percentage of fruit dipped in these extracts was reduced three to four times more compared to the control.
to the control fruit. Only *P. americana* and *A. reticulata* have been reported with fungicidal and insecticidal properties (Aguilar et al., 1996). Alkadienes and acetogenins of avocado and cherimoya seeds are involved in these bioactive effects (Adikaram et al., 1992; Gleye et al., 2000). In this study, we also evaluated pH values of the plant extracts tested. According to some published reports, the most appropriate pH values of *Colletotrichum* development are in the range of

Table 2. Effect of leaf and stem extracts on infection percentage and severity, soluble solid content and fruit mass loss of papaya var. Maradol inoculated with *Colletotrichum gloeosporioides* and stored for 7 days at 25-28°C.

<table>
<thead>
<tr>
<th>Plant specie</th>
<th>Infection (%)</th>
<th>Severity of infection⁴</th>
<th>SSC⁶</th>
<th>Mass loss (%)</th>
<th>Infection (%)</th>
<th>Severity of infection</th>
<th>SSC (NS)</th>
<th>Mass loss (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>89</td>
<td>4</td>
<td>9.6 abcd</td>
<td>8.9 ab</td>
<td>89</td>
<td>4</td>
<td>9.6 a</td>
<td>8.9 a</td>
</tr>
<tr>
<td>A. sapota</td>
<td>33</td>
<td>2</td>
<td>9.9 abc</td>
<td>6.8 b</td>
<td>44</td>
<td>2</td>
<td>9.1 a</td>
<td>8.9 a</td>
</tr>
<tr>
<td>A. reticulata</td>
<td>66</td>
<td>2</td>
<td>8.2 bcde</td>
<td>6.3 b</td>
<td>44</td>
<td>2</td>
<td>7.9 a</td>
<td>8.4 ab</td>
</tr>
<tr>
<td>B. hemisphaerica</td>
<td>80</td>
<td>2</td>
<td>9.4 abcd</td>
<td>8.3 ab</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C. papaya</td>
<td>0</td>
<td>1</td>
<td>10.3 abc</td>
<td>8.8 ab</td>
<td>78</td>
<td>2</td>
<td>9.8 a</td>
<td>7.9 ab</td>
</tr>
<tr>
<td>C. limon</td>
<td>78</td>
<td>3</td>
<td>8.1 ed</td>
<td>9.1 ab</td>
<td>44</td>
<td>2</td>
<td>8.5</td>
<td>8.2 ab</td>
</tr>
<tr>
<td>C. cainito</td>
<td>44</td>
<td>2</td>
<td>9.3 abcd</td>
<td>7.4 ab</td>
<td>44</td>
<td>2</td>
<td>9.2 a</td>
<td>7.1 ab</td>
</tr>
<tr>
<td>D. ebenaster</td>
<td>89</td>
<td>3</td>
<td>8.6 bcde</td>
<td>7.3 ab</td>
<td>80</td>
<td>3</td>
<td>9.2 a</td>
<td>7.8 ab</td>
</tr>
<tr>
<td>M. indica</td>
<td>100</td>
<td>3</td>
<td>8.6 bcde</td>
<td>7.3 ab</td>
<td>80</td>
<td>3</td>
<td>9.2 a</td>
<td>7.8 ab</td>
</tr>
<tr>
<td>P. americana</td>
<td>89</td>
<td>3</td>
<td>9.0 abcd</td>
<td>7.2 ab</td>
<td>56</td>
<td>2</td>
<td>8.4 a</td>
<td>8.0 ab</td>
</tr>
<tr>
<td>P. sapota</td>
<td>20</td>
<td>2</td>
<td>9.7 abcd</td>
<td>8.2 ab</td>
<td>89</td>
<td>3</td>
<td>9.3 a</td>
<td>7.7 ab</td>
</tr>
<tr>
<td>S. purpurea</td>
<td>78</td>
<td>3</td>
<td>7.7 d</td>
<td>6.6 b</td>
<td>67</td>
<td>3</td>
<td>9.4 a</td>
<td>7.8 ab</td>
</tr>
</tbody>
</table>

⁴Severity of infection: 1 = 0% of surface fruit rotten, 2 = 1-25%, 3 = 26-50% and 4 = 51-75%.

⁶Initial SSC = 7.7.

⁵Means followed by the same letter are not significantly different according to Tukeys’s multiple test (P = 0.05). NS = not significant.

⁶Plant material not available.

Table 3. Effect of leaf and stem extracts on infection percentage and severity, soluble solid content and fruit mass loss of mango var. Ataulfo inoculated with *Colletotrichum gloeosporioides* and stored for 7 days at 25-28°C.

<table>
<thead>
<tr>
<th>Plant specie</th>
<th>Infection (%)</th>
<th>Severity of infection⁴</th>
<th>SSC⁶</th>
<th>Mass loss (%)</th>
<th>Infection (%)</th>
<th>Severity of infection</th>
<th>SSC (NS)</th>
<th>Mass loss (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>80</td>
<td>4</td>
<td>12.6 cde</td>
<td>12.6 b</td>
<td>80</td>
<td>4</td>
<td>12.6 b</td>
<td>12.6 c</td>
</tr>
<tr>
<td>A. sapota</td>
<td>60</td>
<td>2</td>
<td>14.3 abc</td>
<td>15.4 a</td>
<td>60</td>
<td>2</td>
<td>16.5 a</td>
<td>13.2 bc</td>
</tr>
<tr>
<td>A. reticulata</td>
<td>90</td>
<td>2</td>
<td>15.6 a</td>
<td>12.6 b</td>
<td>10</td>
<td>2</td>
<td>12.1 b</td>
<td>14.9 abc</td>
</tr>
<tr>
<td>B. hemisphaerica</td>
<td>80</td>
<td>2</td>
<td>12.3 de</td>
<td>11.8 b</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C. papaya</td>
<td>50</td>
<td>2</td>
<td>12.2 de</td>
<td>12.7 ab</td>
<td>20</td>
<td>2</td>
<td>11.6 b</td>
<td>14.7 abc</td>
</tr>
<tr>
<td>C. limon</td>
<td>80</td>
<td>2</td>
<td>12.3 de</td>
<td>12.2 b</td>
<td>20</td>
<td>2</td>
<td>11.4 b</td>
<td>13.3 bc</td>
</tr>
<tr>
<td>C. cainito</td>
<td>70</td>
<td>2</td>
<td>14.6 ab</td>
<td>10.0 a</td>
<td>40</td>
<td>2</td>
<td>16.1 b</td>
<td>12.5 c</td>
</tr>
<tr>
<td>D. ebenaster</td>
<td>20</td>
<td>2</td>
<td>13.3 bcd</td>
<td>12.6 b</td>
<td>10</td>
<td>2</td>
<td>11.9 a</td>
<td>16.8 a</td>
</tr>
<tr>
<td>M. indica</td>
<td>80</td>
<td>2</td>
<td>13.0 bcde</td>
<td>12.4 b</td>
<td>80</td>
<td>2</td>
<td>11.8 a</td>
<td>13.4 bc</td>
</tr>
<tr>
<td>P. americana</td>
<td>80</td>
<td>2</td>
<td>14.1 abc</td>
<td>13.3 ab</td>
<td>80</td>
<td>2</td>
<td>11.9 b</td>
<td>13.1 bc</td>
</tr>
<tr>
<td>P. sapota</td>
<td>60</td>
<td>2</td>
<td>13.0 bcde</td>
<td>13.3 ab</td>
<td>80</td>
<td>2</td>
<td>12.2 b</td>
<td>13.2 bc</td>
</tr>
<tr>
<td>S. purpurea</td>
<td>50</td>
<td>2</td>
<td>11.3 e</td>
<td>11.5 b</td>
<td>80</td>
<td>2</td>
<td>12.7 b</td>
<td>13.4 bc</td>
</tr>
<tr>
<td>T. indicus</td>
<td>70</td>
<td>2</td>
<td>12.2 de</td>
<td>13.4 ab</td>
<td>10</td>
<td>2</td>
<td>12.3 b</td>
<td>15.6 ab</td>
</tr>
</tbody>
</table>

⁴Severity of infection: 2 = 1-25% of surface fruit rotten, and 4 = 51-75%.

⁶Initial SSC = 9.7.

⁵Means followed by the same letter are not significantly different according to Tukeys’s multiple test (P = 0.05).

⁶Plant material not available.
Comparing control and treatment results, pH values of extracts apparently did not affect Colletotrichum development. Overall, infection severity was less when fruit were dipped in plant extracts compared with control fruit. Perhaps combining the fungistatic effects of plant extracts with other non-chemical postharvest treatments such as extracts, heat treatments and antagonists might control postharvest anthracnose diseases. In general, fruit quality was not significantly affected when fruit were dipped in extracts. Changes observed in fruit mass loss for both papaya and mango might be more related with the lack of a controlled storage than with the effects of plant extracts. The inhibition of C. gloeosporioides development by some plant extracts indicates the possibility of their use as a postharvest treatment. However, further investigation should be undertaken to determine the effects of this plant material on other important fungi which cause postharvest disease in mango and papaya, and the isolation and identification of active compounds.

Acknowledgments. We thank Dr. René Arzuffi for his statistical advice and the National Polytechnic Institute COFAA (CGPI-20010748 for financial support.

LITERATURE CITED

Postharvest Biology and Technology 18:67-73.

