

RICYDE. Revista Internacional de Ciencias del Deporte

ISSN: 1885-3137 ricyde@cafyd.com

Editorial Ramón Cantó Alcaraz España

Navarro-Zurita, Laura; Gálvez, Javier; López, Samuel; Suarez-Arrones, Luis Juegos Reducidos en Rugby: diferencias entre el uso o no de contactos y distintos espacios de interacción RICYDE. Revista Internacional de Ciencias del Deporte, vol. XIII, núm. 49, julio, 2017, pp.

260-272 Editorial Ramón Cantó Alcaraz Madrid, España

Disponible en: http://www.redalyc.org/articulo.oa?id=71051616005

Número completo

Más información del artículo

Página de la revista en redalyc.org

RICYDE. Revista Internacional de Ciencias del Deporte

doi:10.5232/ricyde

Rev. int. cienc. deporte

RICYDE. Revista Internacional de Ciencias del Deporte VOLUMEN XIII - AÑO XIII Páginas:260-272 ISSN:1885-3137 Número 49 - Julio - 2017

https://doi.org/10.5232/ricyde2017.04905

Juegos Reducidos en Rugby: diferencias entre el uso o no de contactos y distintos espacios de interacción

Small-Sided Games in Rugby: Differences between the use or not of contact and different spaces of interaction

Laura Navarro-Zurita, Javier Gálvez, Samuel López, Luis Suarez-Arrones
Universidad Pablo de Olavide. España

Resumen

El objetivo de este estudio fue comparar los patrones de movimiento y la intensidad del ejercicio en series de juegos reducidos (JR) manipulando el tamaño del espacio y la presencia o no de contacto. 10 jugadoras de un equipo de rugby siete femenino fueron monitorizadas mediante un GPS para medir los patrones de movimiento, y con un pulsómetro para medir la Frecuencia Cardiaca. Se registraron datos de 4 entrenamientos, en los que se proponían distintas medidas de JR (32x24m y 64x48m) y la inclusión o no de contacto, en los que cada equipo estaba integrado por 5 jugadoras. Cada formato de juego se distribuyó en dos series de 8 minutos con un descanso pasivo de 5 minutos entre cada serie. Los resultados mostraron que las jugadoras recorrieron más carrera a alta velocidad cuando jugaron con contacto, aunque solo en el espacio grande (Diferencia sustancial; TE ± 90% LC); y que cuando los JR se ejecutaron en espacios grandes, las jugadoras se vieron sometidas a unos patrones de movimiento más exigentes, indistintamente de jugar con o sin contactos.

Palabras clave: rugby; siete; juegos reducidos; femenino; GPS.

Abstract

The main goal of this study was to compare patterns of movement and exercise intensity in series of small-sided games (SSG), manipulating the pitch-size and the presence or absence of physical contact. Ten female rugby seven players participated wore a GPS unit to asses patterns of movement and a heart rate monitor to measure heart rate during the series. Data from four training sessions were registered, in which different measures of SSG (32x24m y 64x48m) and the presence or not of contact were developed. Each team was composed of five players. Each game format was distributed in two series of eight minutes, with two rest minutes between each of them. Results showed that players run more at high speed when they played with contact, but only in the large space (substantial difference; ES \pm 90% CL), and when small-sided games were executed in large spaces, players were subjected to more demanding patterns of movement, without distinction of playing with or without contacts.

Key words: rugby; seven; small-sided games; female; GPS.

Correspondencia/correspondence: Laura Navarro-Zurita

Universidad Pablo de Olavide. España Email: lauranavarrozurita@hotmail.com

Introducción

El rugby 7 es un deporte de contacto donde los equipos disputan varios partidos en el mismo día con una duración por partido de la contacto donde los equipos disputan varios partidos en el contacto donde los equipos disputan varios partidos en el contacto donde los equipos disputan varios partidos en el contacto donde los equipos disputan varios partidos en el contacto donde los equipos disputan varios partidos en el contacto donde los equipos disputan varios partidos en el contacto donde los equipos disputan varios partidos en el contacto donde los equipos disputan varios partidos en el contacto donde los equipos disputan varios partidos en el contacto donde los equipos disputan varios partidos en el contacto donde los equipos disputan varios partidos en el contacto donde los equipos disputan varios partidos en el contacto donde los equipos disputan varios partidos en el contacto donde los equipos disputan varios partidos en el contacto donde los equipos disputan varios en el contacto de contacto do contacto do contacto de contacto d mismo día, con una duración por partido de dos partes de 7 minutos, a excepción de las finales (10 min), separadas con un descanso de no más de 2 minutos entre ellas (World Rugby, 2015). El juego se caracteriza por períodos de actividad intermitente de alta intensidad como sprints, carreras a alta velocidad, placajes o rucks, intercalados con periodos de baja intensidad o recuperación generalmente incompleta (Suarez-Arrones, Núñez, Portillo, y Méndez-Villanueva, 2012). Estas demandas locomotoras durante la acción de juego en rugby 7 son más exigentes (expresadas en función del tiempo jugado) que las reflejadas en otras modalidades como rugby XV o rugby league (Suarez-Arrones, Nunez, Portillo, y Mendez- Villanueva, 2012). Por lo tanto, los jugadores en rugby 7 deberán buscar a través del entrenamiento acrecentar o incrementar las cualidades relacionadas con el sprint (Higham, Pyne, Anson, v Eddy, 2013), v un mayor desarrollo del rendimiento aeróbico v anaeróbico para hacer frente a estas demandas que les exige la competición (Higham, Pyne, Anson, y Eddy, 2012; Suarez-Arrones y col., 2014). Además de las elevadas demandas de carrera, la fatiga acumulada por disputar diferentes partidos en un día, junto con la importante carga anaeróbica y el elevado rendimiento aeróbico necesario para hacer frente a las demandas de la competición, hacen que el estado de forma de los jugadores pueda llegar a ser determinante (Elloumi y col., 2012). Por ello, el entrenamiento condicional que se lleve a cabo deberá basarse y orientarse a las demandas de la competición como objetivo primordial.

Para hacer frente a estas demandas de la competición, la jugadora de rugby debe desarrollar grandes niveles de potencia muscular, velocidad, agilidad y potencia aeróbica (Elloumi y col., 2012), todo ello realizado en un complejo entorno técnico-táctico. Los entrenadores por tanto, deben crear condiciones de entrenamiento en las cuales los estímulos que reciban los jugadores desencadenen respuestas fisiológicas similares a las de la competición, y en un entorno de presión y fatiga (Gabbett, Jenkins, y Abernethy, 2009). Según Foster, Twist, Lamb y Nicholas (2010), para ejecutar sesiones de entrenamiento eficientes, los entrenadores buscan múltiples métodos de entrenamiento que permitan entrenar de forma simultánea los elementos físicos, técnicos y tácticos. En esta línea, los juegos reducidos (JR) han sido sugeridos como un método eficaz de entrenamiento físico, técnico y táctico en jugadores de rugby (Kennet, Kempton, y Coutts, 2012).

Muchos entrenadores están convencidos de que un entrenamiento con JR puede reproducir la intensidad suficiente para permitir que las adaptaciones fisiológicas, las habilidades técnicas y tácticas tengan transferencia del entrenamiento a la competición. La mayoría de los JR en fútbol siguen una dinámica similar: series de 4-5 minutos a una intensidad cercana al 90-95% FCmáx, con periodos de recuperación pasiva o activa (Chamari y col., 2005; Hoff, Wisloff, Engen, Kemi, y Helgerud, 2002). Este formato de series de entrenamiento específico a alta intensidad ha mostrado mejoras en el consumo máximo de oxígeno (VO2max), mientras que simultáneamente proporciona un método de entrenamiento ecológicamente válido y más motivador que métodos más tradicionales de entrenamiento (Casamichana y Castellano, 2010; Hill-Haas, Dawson, Coutts y Rowsell, 2009). Se ha sugerido que la intensidad en los JR debe ser mayor que la que experimenta el jugador de rugby durante el partido, para así facilitar el acondicionamiento y los procesos de adaptación a esas demandas de competición (Foster y col., 2010). Diferentes estudios de JR sugieren combinar variaciones en el tamaño del campo y el número de jugadores, principalmente, para así poder modificar los patrones de movimiento (carga externa) y la intensidad de estas tareas (Foster y col., 2010; Gabbett, Jenkins, y Abernethy, 2011; Kennett y col., 2012;). Existe una información limitada en

relación con el análisis de este tipo de situaciones reducidas en rugby, y todas sus diferentes variables objeto de estudio, en comparación con los numerosos artículos publicados en otros deportes como el fútbol. El propósito de este estudio fue comparar los patrones de movimiento y la intensidad del ejercicio en series de JR de diferentes dimensiones (campo pequeño y campo grande), y todo ello cuantificado en una situación donde se permita el contacto (placaje), y en una situación donde no se permita (tocar con las dos manos). Nuestra hipótesis se posiciona a que, comparando los JR con diferentes áreas relativas por jugador no existirán diferencias en la frecuencia cardíaca de los jugadores ante los diferentes espacios individuales de interacción (Foster y col., 2010; Kennett y col., 2012). Así mismo, creemos que en las tareas donde se incluyan contactos, manteniendo siempre el mismo espacio de interacción, la carga externa será menor; mientras que en aquellas tareas que se desarrollen en campo grande la carga externa será mayor que en campo pequeño.

Método

Participantes

10 jugadoras de rugby 7 del equipo Universidad de Sevilla (US) participaron en este estudio. La edad las participantes fue de 21,41±1,91 años, la estatura de 163,1±7,8 cm y el peso de 60,74±5,5 kg. Las jugadoras entrenaban aproximadamente ~6 horas de rugby en campo, ~3 horas de entrenamiento de fuerza en gimnasio y disputaban una jornada competitiva de un día de duración cada mes. Todos los procedimientos fueron aprobados por el Comité Local de Ética en Investigación Institucional (Universidad Pablo de Olavide) de conformidad con las leyes y reglamentos nacionales e internacionales vigentes que rigen el uso de los seres humanos (Declaración de Helsinki II).

Procedimiento experimental

Un diseño observacional se empleó para examinar la carga externa e interna de las jugadoras de rugby durante diferentes ejercicios de JR utilizando tecnología GPS y la respuesta de la frecuencia cardiaca.

Las mediciones fueron llevadas a cabo en el campo de rugby de césped artificial del Servicio de Actividades Deportivas de la Universidad de Sevilla (SADUS). Para llevar a cabo las mediciones fueron necesarias cuatro sesiones de entrenamiento: en la primera sesión se realizó el JR sin contacto y en campo pequeño, en la segunda sin contacto y en campo grande, la tercera con contacto y en campo pequeño y en la cuarta con contacto y en campo grande. Los días en los que se registraron los datos fueron: 22, 27, 29 de enero y 3 de febrero del 2015, con una temperatura media de 10,2°C, 10,9°C, 10,0°C y 12,5°C, respectivamente. La hora en la que se desarrollaron las sesiones fue entre las 21:15 y las 22:15, y antes de comenzar cada sesión, se colocaron los dispositivos GPS y las bandas de frecuencia cardiaca a todos los participantes.

La estructura de la sesión ha sido la misma durante los 4 días y seguía el siguiente protocolo: primero se realizaba un calentamiento estandarizado con ejercicios generales y específicos de rugby (12-15 min), y a continuación comenzaba el JR. Para el espacio de juego se plantearon dos opciones, cuyas dimensiones fueron 32x24m (campo pequeño) y 64x48m (campo grande) (Kennet y col., (2012). Cada equipo estaba formado por las mismas 5 jugadoras, y se realizaron dos series de 8 min de duración (Gabbett y col., 2011), con un descanso pasivo de 5 min entre series. La tarea consistía en que un equipo atacaba continuamente durante 4 min mientras que el otro siempre defendía, y pasados estos 4 min se intercambiaban los roles. El objetivo era que durante el tiempo de ataque se realizase el mayor número de ensayos

posibles. Cuando un equipo ensayaba, iba corriendo hasta medio campo para sacar de nuevo. El saque se hacía golpeando el balón con el pie.

Se distinguieron dos tipos de JR: sin contacto (JR_{sinC}) y con contacto (JR_{conC}). Las reglas para cada uno de ellos eran distintas, siguiéndose las reglas del juego del touch (FIT, 2013) por un lado y las leyes del juego del rugby en el otro caso (World Rugby, 2015). En JR_{sinC}, cuando un jugador era tocado (con las dos manos), inmediatamente debía poner el balón en el suelo y pasar por encima de él (regla 4.2 de las reglas del juego del touch, FIT, 2013). Para poner el balón en juego, otro compañero tenía que acercarse para abrir de nuevo el balón e iniciar el juego. En JR_{conC}, cuando un jugador era placado, inmediatamente debía ir al suelo y liberar el balón (regla 15 de las leyes del juego del rugby, World Rugby, 2015). No se permitía la formación de rucks. El equipo que defendía, una vez que el jugador había sido tocado o placado (en función del JR), debía colocarse a 5 m (regla 9.8 de las reglas del juego del touch, FIT, 2013). Cuando el balón salía fuera de las dimensiones del terreno, se colocaba un balón en la línea y, para ponerlo en juego, se tenía que tocar con el pie. Durante el transcurso de los JR las jugadoras fueron animadas y motivadas para seguir trabajando, fomentando un reinicio rápido del juego cuando el balón era parado. Para evitar la acumulación de fatiga en las jugadoras durante el ejercicio, ha sido la primera serie de cada JR la empleada para efectuar las comparaciones estadísticas oportunas entre los diferentes JR.

Patrones de movimiento en intensidad de la actividad

Para el análisis de los desplazamientos se utilizó un dispositivo GPS (SPI HPU, GPSports Systems, Canberra, Australia) de 15 Hz, y para la monitorización de la frecuencia cardíaca (FC) de las jugadoras se empleó bandas de registro de la FC (Polar ®, Kempele, Finlandia) conectado al dispositivo GPS. Los desplazamientos de las jugadoras se clasificaron en base a las siguientes categorías: distancia total cubierta, distancia recorrida a intensidad media (>14,0 km/h) y distancia recorrida a intensidad alta (>18,0 km/h) (Cunniffe, Proctor, Baker, y Davies, 2009; Suarez-Arrones y col., 2012). El número de aceleraciones se registró en base a 2 categorías: 1,5 – 2,5 m/s² y >2,5m/s². Así mismo, la velocidad máxima (V_{max}) también fue registrada a través del dispositivo GPS. Las variables de frecuencia cardíaca máxima (FC_{max}) y la frecuencia cardíaca media (FC_{med}) fueron registradas durante la realización de los JR. Para estimar la FC_{max} de la jugadora y establecer porcentajes en relación a su máxima, se empleó la ecuación 220-edad (Aznar y Webster, 2006). En aquellas jugadoras en las que la FC_{max} fue mayor y superó durante el JR a la FC_{max} obtenida a través de la ecuación, se utilizó dicho valor para el análisis estadístico.

Además de monitorizar la respuesta de la FC, también se registró el índice de eficiencia (Eff_{index}). Este Eff_{index} se mide en unidades arbitrarias (UA) y se calculó dividiendo la velocidad media (m/min) entre la frecuencia cardiaca media (FC_{med}), expresada como porcentaje de la máxima (%FC_{max}). Este índice informa sobre la eficiencia con la que una jugadora puede correr ante un estrés cardiovascular dado (Barbero- Álvarez; Boullosa, Nakamura, Andrin, y Castagna, 2012).

Análisis estadístico

Los datos se presentaron como media ± desviación estándar. Todas las variables presentaron una distribución normal (test Shapiro-Wilk). El tamaño del efecto (TE) fue calculado (Cohen, 1988) para comparar la magnitud de las diferencias entre las diferentes series de un mismo JR, y entre los distintos JR en todas las variables objeto de estudio. La escala de Hopkins para determinar la magnitud de los tamaños del efecto ha sido empleada, donde 0 - 0.2 = trivial, 0.2 - 0.6 = pequeño, 0.6 - 1.2 = moderado, 1.2 - 2.0 = grande, >2.0 = muy grande (Hopkins,

Marshall, Batterham, y Hanin (2009). La diferencias cuantitativas fueron evaluadas de manera cualitativa según la propuesta de Hopkins, Marshall, Batterham, y Hanin (2009) como: <75%, no es claro; 75-95%, probable; 95-99%, muy probable; >99%, casi seguro. Se determinó un efecto sustancial a diferencias con una probabilidad >75% al igual que en previos estudios de rugby siete (Suarez- Arrones, Arenas, López, Requena, Terril, y Méndez-Villanueva, 2014).

Resultados

Diferencias entre series

Los desplazamientos e intensidad del ejercicio de las jugadoras durante las dos series de JR_{sinC} en el espacio pequeño se muestran en la Tabla 1. Existió una sustancial reducción en la distancia total recorrida y en la distancia recorrida >18 km/h durante la segunda serie en comparación con la primera (Tabla 1). No existieron diferencias entre series en el resto de variables analizadas.

Tabla 1. Patrones de movimiento e intensidad del ejercicio en series de JR_{sinC} en campo pequeño.

Variables	Serie 1	Serie 2	TE ± 90% LC	Valoración Cualitativa
DT (m)	$743,9 \pm 61,8$	$723,2 \pm 75,7$	-0.31 ± 0.27	↓Probable
D > 14 km/h (m)	$14,9 \pm 11,6$	$12,4 \pm 9,0$	$-0,20 \pm 0,39$	No es claro
D > 18 km/h (m)	$1,1 \pm 2,1$	$0,1 \pm 0,3$	$-0,43 \pm 0,54$	↓Probable
$\#Ac 1,5 \text{ m/s}^2-2,5 \text{m/s}^2$	$2,8 \pm 2,5$	$2,7 \pm 2,5$	$-0,20 \pm 0,35$	No es claro
$\#Ac > 2.5 \text{ m/s}^2$	$2,8 \pm 2,5$	$2,7 \pm 2,5$	-0.04 ± 0.52	No es claro
FC _{med} (%)	$90,5 \pm 2,6$	$91 \pm 2,4$	0.18 ± 0.33	No es claro
FC _{max} (%)	$97,1 \pm 3,6$	$97,4 \pm 3,4$	0.06 ± 0.15	No es claro
Effindex (UA)	$0,96 \pm 0,1$	$0,93 \pm 0,1$	$-0,29 \pm 0,25$	No es claro
$V_{max}(km/h)$	$16,57 \pm 2,6$	$15,7 \pm 1,5$	-0.25 ± 0.48	No es claro

^{#:} Número; TE: Tamaño del Efecto; LC: Límite de Confianza; DT: Distancia Total recorrida; D: Distancia recorrida; Ac: Aceleraciones; FC_{med} : Frecuencia Cardíaca Media; FC_{max} : Frecuencia Cardíaca Máxima; Eff_{index} : Índice de eficiencia; $V_{máx}$: Velocidad Máxima.

Los desplazamientos e intensidad del ejercicio de las jugadoras durante las dos series de JR_{sinC} en el espacio más grande se muestran en la Tabla 2. No existieron diferencias entre series en las variables analizadas.

Tabla 2. Patrones de movimiento e intensidad del ejercicio en series de JR_{sinC} en campo grande.

Variables	Serie 1	Serie 2	$TE \pm 90\% LC$	Valoración Cualitativa
DT (m)	$895,7 \pm 63,5$	$885,1 \pm 75,7$	-0.15 ± 0.57	No es claro
D > 14 km/h (m)	$75,1 \pm 46,6$	$77,2 \pm 53,3$	$0,04 \pm 0,21$	No es claro
D > 18 km/h (m)	$13,4 \pm 15,8$	$16,3 \pm 19,4$	$0,17 \pm 0,26$	No es claro
$\#Ac 1,5 \text{ m/s}^2-2,5 \text{m/s}^2$	$2,1 \pm 2,1$	$2,2 \pm 1,6$	$0,05 \pm 0,61$	No es claro
$\#Ac > 2,5 \text{ m/s}^2$	$2,1 \pm 2,1$	$2,2 \pm 1,6$	0.05 ± 0.61	No es claro
FC_{med} (%)	$87,0 \pm 8,5$	$87,4 \pm 7,1$	$0,04 \pm 0,42$	No es claro
FC _{max} (%)	$95,5 \pm 6,3$	$96,4 \pm 6,8$	$0,13 \pm 0,66$	No es claro
Eff _{index} (UA)	$1,18 \pm 0,16$	$1,15\pm0,09$	-0.18 ± 0.39	No es claro
$V_{max}(km/h)$	$19,9 \pm 2,5$	$20,0 \pm 1,5$	0.03 ± 0.49	No es claro

#: Número; TE: Tamaño del Efecto; LC: Límite de Confianza; DT: Distancia Total recorrida; D: Distancia recorrida; Ac: Aceleraciones; FC_{med} : Frecuencia Cardíaca Media; FC_{max} : Frecuencia Cardíaca Máxima; Eff_{index} : Índice de eficiencia; $V_{máx}$: Velocidad Máxima

Los desplazamientos e intensidad del ejercicio de las jugadoras durante las dos series de JR_{conC} en el espacio pequeño se muestran en la Tabla 3. Existió un aumento sustancial en la distancia total recorrida, en la distancia >14 km/h, V_{máx} y Eff_{index} durante la segunda serie en comparación con la primera (Tabla 3). No existieron diferencias entre las series en el resto de variables analizadas.

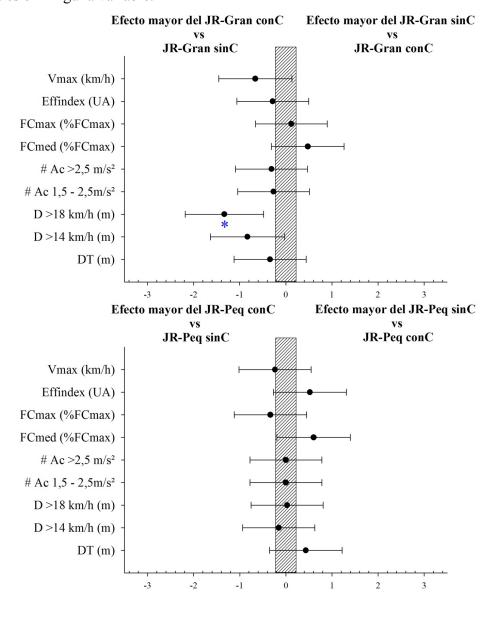
Tabla 3. Patrones de movimiento e intensidad del ejercicio en series de JR_{conC} en campo pequeño.

Variables	Serie 1	Serie 2	$TE \pm 90\% LC$	Valoración Cualitativa
DT (m)	$715,5 \pm 70,3$	$778,3 \pm 87,8$	$1,19 \pm 0,67$	Casi seguro
D > 14 km/h (m)	$16,8 \pm 13,1$	$34,4\pm20,3$	$1,32\pm0,94$	Casi seguro
D > 18 km/h (m)	$0,9 \pm 11,3$	$4,0 \pm 3,0$	-0.16 ± 0.60	No es claro
$\#Ac 1,5 \text{ m/s}^2-2,5 \text{m/s}^2$	$2,8 \pm 2,1$	$2,8 \pm 2,1$	-0.16 ± 0.61	No es claro
$\#Ac > 2.5 \text{ m/s}^2$	$2,8 \pm 5,6$	$2,4 \pm 1,7$	-0.16 ± 0.6	No es claro
FC _{med} (%)	$87,7 \pm 6,4$	$89,2 \pm 5,5$	0.06 ± 0.36	No es claro
FC _{max} (%)	$98,43 \pm 4,4$	$97,7 \pm 4,0$	-0.15 ± 0.24	No es claro
Eff _{index} (UA)	0.91 ± 0.09	$1 \pm 0,12$	$0,\!87\pm0,\!62$	Casi seguro
$V_{max}(km/h)$	$17,1 \pm 1,7$	$18,6 \pm 1,9$	$0,77 \pm 0,98$	Muy Probable

^{#:} Número; TE: Tamaño del Efecto; LC: Límite de Confianza; DT: Distancia Total recorrida; D: Distancia recorrida; Ac: Aceleraciones; FC_{med}: Frecuencia Cardíaca Media; FC_{max}: Frecuencia Cardíaca Máxima; Eff_{index}: Índice de eficiencia; V_{máx}: Velocidad Máxima

Los desplazamientos e intensidad del ejercicio de las jugadoras durante las dos series de JR_{conC} en el espacio más grande se muestran en la Tabla 4. Existió una reducción sustancial en la distancia total recorrida, distancia recorrida >18 km/h y Eff_{index} durante la segunda serie en comparación con la primera (Tabla 4). La FC_{med} (%) se incrementó de manera sustancial en la segunda serie en comparación con la primera (Tabla 4). No existieron diferencias entre las series en el resto de variables analizadas.

Tabla 4. Patrones de movimiento e intensidad del ejercicio en series de JR_{conC} en campo grande.


Variables	Serie 1	Serie 2	$TE \pm 90\% LC$	Valoración Cualitativa
DT (m)	927 ± 113	$865 \pm 98,3$	$-0,56 \pm 0,27$	Casi seguro
D > 14 km/h (m)	$119 \pm 58,2$	$94,2 \pm 35,6$	-0.38 ± 0.53	No es claro
D > 18 km/h (m)	$43,4 \pm 27,6$	$25,6 \pm 24,7$	-0.58 ± 0.56	Probable
$\#Ac 1,5 \text{ m/s}^2-2,5 \text{m/s}^2$	$2,7 \pm 2,4$	$2,7 \pm 1,3$	$0,0 \pm 0,45$	No es claro
$\#Ac > 2,5 \text{ m/s}^2$	$2,8 \pm 2,4$	$2,7 \pm 1,4$	-0.04 ± 0.46	No es claro
FC _{med} (%)	$79,8 \pm 19,6$	$88,9 \pm 6,1$	$0,42 \pm 0,56$	Muy Probable
FC _{max} (%)	$94,8 \pm 5,2$	$95,1 \pm 4,9$	$0,05 \pm 0,4$	No es claro
Eff _{index} (UA)	$1,23 \pm 0,19$	$1,13 \pm 0,14$	$-0,47 \pm 0,29$	Casi seguro
V _{max} (km/h)	$21,8 \pm 3,2$	$21,7 \pm 2,25$	-0.12 ± 0.68	No es claro

^{#:} Número; TE: Tamaño del Efecto; LC: Límite de Confianza; DT: Distancia Total recorrida; D: Distancia recorrida; Ac: Aceleraciones; FC_{med}: Frecuencia Cardíaca Media; FC_{max}: Frecuencia Cardíaca Máxima; Eff_{index}: Índice de eficiencia; V_{máx}: Velocidad Máxima

Diferencias entre la inclusión o no de contactos

Las diferencias en los desplazamientos e intensidad del ejercicio de las jugadoras durante el JR_{conC} y el JR_{sinC} en el campo más grande se muestran en la Figura 1. Durante el JR_{conC} se recorrió sustancialmente una mayor distancia >18 km/h en comparación con el JR_{sinC} (Figura 1). No existieron diferencias significativas en el resto de variables analizadas.

Las diferencias en los desplazamientos e intensidad del ejercicio de las jugadoras durante el JR_{conC} y el JR_{sinC} en el campo pequeño se muestran en la Figura 1. No existieron diferencias sustanciales en ninguna variable.

Cambios estandarizados en la media ($TE \pm 90\% LC$)

Figura 1. Diferencias en los desplazamientos e intensidad del ejercicio entre el uso (conC) o no uso (sinC) de los contactos, en un juego reducido con un espacio individual de interacción más grande (JR-Gran) o en un espacio pequeño (JR-Peq). * Diferencia sustancial (TE \pm 90% LC). #: Número; TE: Tamaño del Efecto; CL: Límite de Confianza; DT: Distancia Total recorrida; D: Distancia recorrida; Ac: Aceleraciones; FC $_{max}$: Frecuencia Cardíaca Méxima; Eff $_{index}$: Índice de eficiencia; V $_{máx}$: Velocidad Máxima

Diferencias entre los diferentes espacios individuales de interacción

Las diferencias en los desplazamientos e intensidad del ejercicio de las jugadoras durante el JR_{sinC} en campo grande y el JR_{sinC} en el campo pequeño se muestran en la Figura 2. Durante el JR_{sinC} en campo grande existió una sustancial mayor distancia total recorrida, una sustancial mayor distancia recorrida >14 km/h, >18 km/h, una sustancial mayor $V_{máx}$ y Eff_{index} (Figura 2). No existieron diferencias sustanciales en el resto de variables analizadas.

Las diferencias en los desplazamientos e intensidad del ejercicio de las jugadoras durante el JR_{conC} en campo grande y el JR_{conC} en campo pequeño se muestran en la Figura 2. Durante el JR_{conC} en campo grande existió una sustancial mayor distancia total recorrida, una sustancial mayor distancia recorrida >14 km/h, >18 km/h, una sustancial mayor $V_{máx}$ y Eff_{index} (Figura 2). No existieron diferencias sustanciales en el resto de variables analizadas.

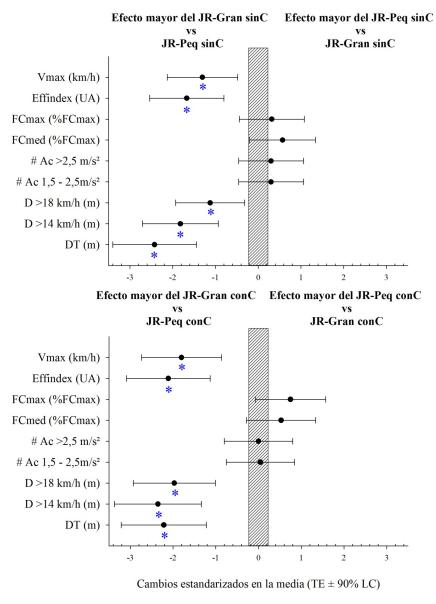


Figura 2. Diferencias en los desplazamientos e intensidad del ejercicio en un juego reducido con un espacio individual de interacción más grande (JR-Gran) o pequeño (JR-Peq), con el empleo (conC) o no empleo (sinC) de los contactos. * Diferencia sustancial (TE \pm 90% LC). #: Número; TE: Tamaño del Efecto; CL: Límite de Confianza; DT: Distancia Total recorrida; D: Distancia recorrida; Ac: Aceleraciones; FC $_{max}$: Frecuencia Cardíaca Méxima; Eff $_{index}$: Índice de eficiencia; V $_{max}$: Velocidad Máxima.

Discusión

El objetivo de este estudio fue comparar los patrones de movimiento y la intensidad del ejercicio en dos JR con diferentes dimensiones (campo pequeño y campo grande), y ambas situaciones analizadas permitiendo el juego con contacto (placaje) o sin contacto (tocar con las dos manos). Como principales hallazgos de la investigación destacamos que 1) las jugadoras recorrieron más distancia en carrera a alta velocidad cuando jugaron con contacto, aunque solo en el espacio grande; y que 2) cuando los JR se ejecutaron en espacios grandes, las jugadoras se vieron sometidas a unos patrones de movimiento más exigentes y elevados, indistintamente de jugar con o sin contactos.

Que los autores tengan conocimiento, no existe información en la literatura científica donde se analicen en rugby las posibles diferencias entre series de un mismo juego reducido, por lo tanto la comparación con otros resultados se hace inviable. En nuestra hipótesis inicial considerábamos que los patrones de movimiento podrían reducirse en la segunda serie con respecto a la primera, debido a la posible fatiga de la jugadora tras la ejecución de esta serie previa. Nuestros resultados reflejaron que esto se cumplió en los JR_{sinC} en campo pequeño y en los JR_{conC} en campo grande, por lo tanto no ha sido algo común a los diferentes juegos reducidos, manifestando esto que una segunda serie de juegos reducidos con estas características no siempre se puede ver influenciada por la ejecución de una primera. Se hace necesario conocer en futuras investigaciones con qué número de series la jugadora empieza en cada situación a reducir de manera sustancial sus patrones de movimiento, al igual que reflejaron previos estudios en fútbol (Dellal, Drust, y Lago-Penas, 2012). Esto junto con la información de la carga interna podría asociarse a una posible fatiga por parte de la jugadora (Mohr, Krustrup, y Bangsbo, 2003; Rampinini, Impellizzeri, Castagna, Coutts, y Wisloff, 2009; Suarez-Arrones, Nuñez; Munguia-Izquierdo, Portillo, y Mendez-Villanueva, 2013), como ocurre de manera clara en el JR_{conC} en campo grande, donde las jugadoras redujeron su distancia recorrida total y a alta velocidad, a la vez que se incrementó de manera sustancial su carga interna. Probablemente esto también haya podido deberse a un mayor incremento en las acciones de contacto, donde la carga interna es muy elevada mientras que la carga externa es prácticamente inexistente en la mayoría de los casos. En esta línea, un estudio previo con jugadores de rugby siete mostró como los "delanteros" exhibieron una similar carga interna a los "tres cuartos" durante el partido pese a cubrir menos metros, aunque participando sustancialmente en más acciones de contacto (Suarez-Arrones y col., 2014). Todas estas condiciones permitirán estudiar la influencia que esto pueda provocar en el comportamiento técnico - táctico de la jugadora simulando condiciones que se reproducirán en la propia competición, donde la jugadora tendrá que tomar decisiones, ejecutar gestos técnicos y, todo ello, siguiendo un modelo de juego propuesto donde deberán tolerar de manera intermitente estados con altos niveles de fatiga seguidos de periodos de recuperación generalmente incompleta (Bishop, Girard, v Mendez-Villanueva, 2011). También debemos considerar que estos patrones de movimiento también se pueden ver influidos por variables contextuales o de la lógica interna del juego (Castellano, Blanco-Villasenor Alvarez, 2011; Rampinini y col., 2009). Atendiendo a esto como una posible justificación a lo que nuestros resultados reflejaron en los JR_{conC} en campo pequeño, las jugadoras en este caso recorrieron una mayor distancia total, distancia >14 km/h y registraron velocidades máximas más elevadas durante la segunda serie en comparación con la primera. Probablemente también fallos en la organización defensiva y/o errores directos en el placaje, hayan facilitado a las jugadoras el disponer de más espacios para correr en comparación con la primera serie, teniendo en cuenta también que este mayor número de posibles fallos en defensa puedan en ocasiones también, venir provocados o ser fruto de un mayor cansancio por parte de la jugadora.

Cuando comparamos los diferentes espacios de interacción, nuestros resultados evidenciaron que los patrones de movimiento fueron más elevados en espacios mayores, comparándolos con campos más pequeños. En esta línea, un estudio previo con jugadores semi-profesionales de rugby (Kennett y col, 2012) reveló como los patrones de movimiento se vieron también afectados por el tamaño del campo, recorriendo los jugadores una mayor distancia total, distancia a alta velocidad, ejecutando también un mayor número de sprints y registrando velocidades máximas más elevadas en el espacio con mayores dimensiones. Casamichana y Castellano (2010) con jugadores de fútbol mostraron que la distancia total recorrida, la distancia >14km/h, >18km/h y la velocidad máxima fue mayor en los juegos reducidos en campo grande que en campo pequeño. Estos hallazgos respaldan junto con nuestros resultados la hipótesis inicial planteada, donde considerábamos que las distancias recorridas serían mayores en el campo grande con respecto al campo pequeño. Esta información revela como manipulando la variable del espacio relativo por jugador, podemos influir directamente en la carga externa de ese JR propuesto. De esta manera y en función de los objetivos condicionales y técnico-tácticos que persigan este tipo de ejercicios, podremos prescribir patrones de movimiento muy diferentes en los jugadores jugando con el espacio individual de interacción.

Cuando analizamos la respuesta de la FC ante diferentes espacios de juego, podemos comprobar como existe una variedad de resultados en la literatura científica. Previos estudios en fútbol son contradictorios en sus resultados, donde una línea de investigaciones (Owen, Wong, McKenna, y Dellal, 2012; Tessitore, Meeusen, Piacentini, Demarie, y Capranica, 2006) concluyen que la FC es mayor durante un JR en campo pequeño comparándolo con campo grande. A su vez, y más específico de rugby, Muñoz-Chavez, Reigal, Hernández-Mendo y Raimundi (2015) obtuvieron un mayor nivel de frecuencia cardíaca en el campo pequeño con respecto al campo grande. Por otro lado Hill-Haas, Dawson, Impellizzeri, y Coutts (2011), muestran que la FC fue mayor en el campo grande con respecto al pequeño. Otro estudio publicado en rugby (Foster y col., 2010) expone que los jugadores (en este caso jugadores elite junior) estuvieron expuestos a una respuesta de la frecuencia cardiaca similar, independientemente de los diferentes espacios individuales de interacción (pequeño: 15 x 25 m, mediano: 20 x 30 m y grande 25 x 35 m) y número de jugadores por espacio (4 vs 4 y 6 vs 6). Estos hallazgos son semejantes a nuestros resultados, donde la FC_{med} y FC_{max} fueron similar en las jugadoras, independientemente de que participasen en un espacio más grande o más pequeño, tanto en el JR_{conC} como en el JR_{sinC}. Esto explicaría también porque el Eff_{index} (relación de carga externa – carga interna) se vio aumentado en el campo grande, ya que las jugadoras pese a estar sometidas a unas demandas de carga externa mayores, su cara interna fue similar. En relación con esto también se hace necesario conocer el número y tipo de contactos a los que las jugadoras son sometidas, de cara un mayor entendimiento de las demandas del ejercicio, ya que la carga interna de la jugadora podría verse alterada por su participación en mayor o menos número de placajes o rucks, cuando el ejercicio se lo permite.

Conclusiones

En base a los resultados del presente trabajo concluimos que modificar las dimensiones de los JR supone variaciones en los patrones de movimiento de las jugadoras, siendo mayores conforme mayor es el espacio de juego, mientras que la inclusión de contactos en ejercicios en campo grande puede provocar mayores desplazamientos a alta velocidad. No siempre los desplazamientos de una segunda serie de JR pueden verse influenciados o alterados por la ejecución de una primera en jugadoras de este nivel, mientras que la FC no cambia independientemente del JR realizado.

Referencias

- Aznar, S., & Webster, T. (2006). Actividad Física y Salud en la Infancia y la Adolescencia: Guía para todas las personas que participan en su educación (pag. 14). Madrid: Secretaría General Técnica. Centro de Publicaciones. Ministerio de Educación y Ciencia.
- Barbero-Álvarez, J.; Boullosa, D. A.; Nakamura, F. Y.; Andrín, G., & Castagna, C. (2012). Physical and physiological demands of field and assistant soccer referees during America's cup. *The Journal of Strength & Conditioning Research*, 26(5), 1383-1388.
 - https://doi.org/10.1519/JSC.0b013e31825183c5
- Casamichana, D., & Castellano, J. (2010). Time-motion, heart rate, perceptual and motor behavior demands in small-sides soccer games: Effects of pitch size. *Journal of Sports Sciences*, 28(14), 1615-1623. https://doi.org/10.1080/02640414.2010.521168
- Castellano, J.; Blanco-Villaseñor, A., & Alvarez, D. (2011). Contextual variables and time-motion analysis in soccer. *International Journal of Sports Medicine*, 32(6), 415-421.
 - https://doi.org/10.1055/s-0031-1271771
- Chamari, K.; Hachana, Y.; Kaouech, F.; Jeddi, R.; Moussa-Chamari, I., & Wisloff, U. (2005). Endurance training and testing with the ball in young elite soccer players. British Journal of Sports Medicine, 39(1), 24-28. https://doi.org/10.1136/bjsm.2003.009985
- Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. *Earlbaum Associates, Hillsdale.*
- Cunniffe, B.; Proctor, W.; Baker, J. S., & Davies, B. (2009). An evaluation of the physiological demands of elite rugby union using global positioning system tracking software. *The Journal of Strength & Conditioning Research*, 23(4), 1195-1203. https://doi.org/10.1519/JSC.0b013e3181a3928b
- Dellal, A.; Drust, B., & Lago-Penas, C. (2012). Variation of activity demands in small-sided soccer games. *International Journal of Sports Medicine*, *33*(05), 370-375. https://doi.org/10.1055/s-0031-1295476
- Elloumi, M.; Makni, E.; Moalla, W.; Bouaziz, T.; Tabka, Z.; Lac, G., & Chamari, K. (2012). Monitoring training load and fatigue in rugby seven players. *Asian Journal of Sports Medicine*, *3*(3), 175-184. https://doi.org/10.5812/asjsm.34688
- Federación Internacional de Touch (2013). Reglas del juego. (n.p.): Federación Internacional de Touch.

- Foster, C. D.; Twist, C.; Lamb, K. L., & Nicholas, C. W. (2010). Heart rate responses to small-sided games among elite junior rugby league players. *The Journal of Strength & Conditioning Research*, 24(4), 906-911. https://doi.org/10.1519/JSC.0b013e3181aeb11a
- Gabbett, T.; Jenkins, D., & Abernethy, B. (2009). Game-based training for improving skill and physical fitness in team sport athletes. *International Journal of Sports Science & Coaching*, 4(2), 273-283. https://doi.org/10.1260/174795409788549553
- Gabbett, T. J.; Jenkins, D. G., & Abernethy, B. (2011). Relationships between physiological, anthropometric, and skill qualities and playing performance in professional rugby league players. *Journal of Sports Sciences*, 29(15), 1655-1664. https://doi.org/10.1080/02640414.2011.610346
- Higham, D.G.; Pyne, D.B.; Anson, J.M., & Eddy, A. (2013). Movement patterns in rugby sevens: effects of tournament level, fatigue and substitute players. *Journal of Science and Medicine in Sport*, *15*(3), 277-282. https://doi.org/10.1016/j.jsams.2011.11.256
- Higham, D.G.; Pyne, D.B.; Anson, J.M., & Eddy, A. (2013). Physiological, anthropometric, and performance characteristics of rugby sevens players. *International Journal of Sports Physiology and Performance*, 8(1), 19-27. https://doi.org/10.1123/ijspp.8.1.19
- Hill-Hass, S.; Dawson, B.; Coutts, A., & Rowsell, G. (2009). Physicological responses and time-motion characteristics of various small-sided soccer games in youth players. *Journal of Sports Sciences*, *27*(1), 1-8. https://doi.org/10.1080/02640410802206857
- Hoff, J.; Wisloff, U.; Engen, L.C.; Kemi, O.J., & Helgerud, J. (2002). Soccer specific aerobic endurance training. British Journal Sports Medicine, 36, 218-221. https://doi.org/10.1136/bjsm.36.3.218
- Hopkins, W. G.; Marshall, S. W.; Batterham, A. M., & Hanin, J. (2009). Progressive statistics for studies in sports medicine and exercise science. *Medicine and Science in Sports and Exercise*, 41(1), 3-12. https://doi.org/10.1249/MSS.0b013e31818cb278
- Kennett, D. C.; Kempton, T., & Coutts, A. J. (2012). Factors affecting exercise intensity in rugby-specific small-sided games. *The Journal of Strength & Conditioning Research*, 26(8), 2037-2042. https://doi.org/10.1519/JSC.0b013e31823a3b26
- Mohr, M.; Krustrup, P., & Bangsbo, J. (2003). Match performance of high-standard soccer players with special reference to development of fatigue. *Journal of Sports Sciences*, 21(7), 519-528. https://doi.org/10.1080/0264041031000071182
- Muñoz-Chavez, B.; Reigal, R.; Hernández-Mendo, A., & Raimundi, M. (2015). Efectos del número de jugadores sobre la percepción subjetiva del esfuerzo, la frecuencia cardiaca y las conductas de juego en rugby. *RICYDE. Revista internacional de ciencias del deporte*, 11(42), 360-375. https://doi.org/10.5232/ricyde2015.04205

- Owen, A. L.; Wong, D. P.; McKenna, M., & Dellal, A. (2011). Heart rate responses and technical comparison between small-vs. large-sided games in elite professional soccer. *The Journal of Strength & Conditioning Research*, 25(8), 2104-2110. https://doi.org/10.1519/JSC.0b013e3181f0a8a3
- Portillo, J.; González-Ravé, J.M.; Juárez, D.; García, J.M.; Suárez-Arrones, L. & Newton, R.U. (2014). Comparison of running characteristics and heart rate response of international and national female rugby sevens players during competitive matches. *Journal of Strength and Conditioning Research*, 28(8), 2281- 2289. https://doi.org/10.1519/JSC.0000000000000393
- Rampinini, E.; Impellizzeri, F. M.; Castagna, C.; Coutts, A. J., & Wisløff, U. (2009). Technical performance during soccer matches of the Italian Serie A league: Effect of fatigue and competitive level. *Journal of Science and Medicine in Sport*, 12(1), 227-233.

https://doi.org/10.1016/j.jsams.2007.10.002

- Suarez-Arrones, L.; Arenas, C.; López, G.; Requena, B.; Terrill, O., & Mendez-Villanueva, A. (2014). Positional differences in match running performance and physical collisions in men rugby sevens. *International Journal of Sports Physiology Performance*, 9(2), 316-323. https://doi.org/10.1123/ijspp.2013-0069
- Suarez-Arrones, L.; Núñez, J.; Munguía-Izquierdo, D.; Portillo, J., & Mendez-Villanueva, A. (2013). Impact of several matches in a day on physical performance in rugby sevens referees. *International Journal of Sports Physiology Performance*, 8(5), 496-501.

https://doi.org/10.1123/ijspp.8.5.496

- Suarez-Arrones, L.; Nuñez, F. J.; Portillo, J., & Mendez-Villanueva, A. (2012). Match running performance and exercise intensity in elite female Rugby Sevens. *The Journal of Strength & Conditioning Research*, *26*(7), 1858-1862. https://doi.org/10.1519/JSC.0b013e318238ea3e
- Suarez- Arrones, L.J.; Nunez, F.J., Portillo, J. & Mendez-Villanueva, A. (2012). Running demands and heart rate responses in men rugby sevens. *The Journal of Strength and Conditioning Research*, 26(11), 3155-3159. https://doi.org/10.1519/JSC.0b013e318243fff7
- Tessitore, A.; Meeusen, R.; Piacentini, M. F.; Demarie, S., & Capranica, L. (2006). Physiological and technical aspects of 6-a-side soccer drills. *Journal of Sports Medicine and Physical Fitness*, 46(1), 36-43.

World Rugby (2015). Leyes del Juego de Rugby. Dublín, Irlanda: World Rugby.