Aguilar Florés, Diana Concepción; Moo Huchin, Victor; Cob Calam, Nubia; Rivera Muñoz, Gerardo; Vargas y Vargas, Lourdes; Tamayo Canúl, Elsy; Tamayo Cortez, Jorge

Vida útil del jugo de sábila (Aloe vera MILL), en presencia de propoleo, citracidin y nisina.

Revista Iberoamericana de Tecnología Postcosecha, vol. 12, núm. 1, junio, 2011, pp. 94-100

Asociación Iberoamericana de Tecnología Postcosecha, S.C.
Hermosillo, México

Disponible en: http://www.redalyc.org/articulo.oa?id=81318808015
VIDA UTIL DEL JUGO DE SÁBILA (Aloe vera MILL), EN PRESENCIA DE PROPOLEO, CITRACIDIN Y NISINA.

1Diana Concepción Aguilar Florés, 2Victor Moo Huchin, 2Nubia Cob Calam 1Gerardo Rivera Muñoz, 1Lourdes Vargas y Vargas, 1Elsy Tamayo Canúl, y 1Jorge Tamayo Cortez.

1Instituto Tecnológico de Mérida, Km-5 carretera Mérida-Progreso S/N, Mérida Yucatán, México, C. P. 97118, Tel/fax (999)9 44-84-79; tamayin@hotmail.com; 2Instituto Tecnológico Superior de Calkiní. Avenida Ah-Canul Carretera federal Campeche-Mérida, Calkiní, Campeche, México. C.P. 24900, Tel. (996) 8134870

Palabras claves: propoleo, citricidin, nisin, aloe.

RESUMEN
La sábila es nativa de la región mediterránea, llegó de la mano de los frailes Jesuitas al continente americano. La demanda de sábila en el mercado Internacional, se encuentra principalmente en países como Japón, EE UU, Suiza, Hong Kong, Bahrein, Estonia, Israel y los pertenecientes a la Unión Europea que demandan tanto la penca de sábila, como los productos ya transformados. El objetivo de este trabajo fue evaluar la aplicación de agentes antimicrobianos naturales en la vida útil del jugo de sábila. Al jugo se le adicionó ácido cítrico para ajustar el pH aproximadamente a 3.5 y posteriormente se agregó los 3 tipos de agentes antimicrobianos con 3 concentraciones diferentes cada uno. La aplicación del tratamiento térmico (T1) y la adición de propóleo (T2, T3, T4), nisina (T5, T6 y T7) y aceites esenciales (T8, T9 y T10) controlaron la contaminación microbiológica y prolongaron la vida útil del jugo de sábila hasta 90 días tanto a 10 como a 25°C.

SHELF LIFE OF ALOE VERA JUICE (Aloe vera MILL) ADDED WITH PROPOLIS, CITRACIDIN AND NISIN

Key words: propolis, citricidin, nisin, aloe

ABSTRACT
Aloe is native to the Mediterranean region, came from the hands of Jesuit priests to the Americas. Demand for aloe vera in the international market, is mainly found in countries like Japan, USA, Switzerland, Hong Kong, Bahrain, Estonia, Israel and those belonging to the European Union to require both the stalk of aloe vera products such as processed and. The aim of this study was to evaluate the application of natural antimicrobial agents in the life of aloe vera juice. When juice is added citric acid to adjust pH about 3.5 and then added the 3 types of antimicrobial agents with 3 different concentrations each. The application of heat treatment (T1) and the addition of propolis (T2, T3, T4), nisin (T5, T6 and T7) and essential oils (T8, T9 and T10) controlled microbiological contamination and prolonged the life of the juice aloe up to 90 days at both 10 and at 25 °C.

INTRODUCCIÓN
La sábila (Aloe barbadensis Miller) fue introducida en América por los españoles, teniendo su origen en la región mediterránea, posiblemente de la parte alta del Nilo y el Norte de África. Sus múltiples usos y propiedades analgésica, desinflamante, cicatrizante, digestiva, antiviral,
antimicrobiano, laxante y de protección contra la radiación e inmunostimulador (Ni Y, et al., 2004). La gran demanda de sábila como materia prima se genera en países como: Estados Unidos de Norteamérica en época de invierno, Japón, Corea, Hong Kong, y la Unión Europea a precios bastantes atractivos.

El gel de sábila, durante su procesamiento puede sufrir modificaciones originadas por contaminación microbiana y factores como la temperatura y el oxígeno que implica una reducción de su vida útil, originando cambios indeseables de color, sabor, olor y la modificación de ciertas propiedades nutricionales. La estabilización del gel se realiza actualmente mediante deshidratación o liofilización, también puede ser irradiado, congelado y pasteurizado para una adecuada conservación. Además, se le puede añadir conservantes como benzoato de sodio y sabor de potasio. No se acepta fácilmente la aplicación de estos químicos sintéticos en los alimentos, especialmente en frutas y hortalizas frescas cortadas (Baldwin et al. 1996); debido a la demanda de productos libres de agentes químicos que puedan ocasionar daños al hombre y al medio ambiente (Artés et al., 1999). Por lo que se está buscando la aplicación de aditivos naturales. El uso de agentes antimicrobianos naturales (nisina, aceites esenciales, propóleo) y una adecuada pasteurización se presenta como una alternativa para alargar la vida útil del jugo de sábila, de manera que se obtenga un jugo con buena calidad aceptada por el consumidor.

MÉTODOLOGIA

Materia prima. El jugo fue extraído de las pencas de sábila de la plantación ubicada en el municipio de Umán, Yucatán a 15 km de la ciudad Mérida, México.

Extracción del jugo de sábila. Para obtener el gel de las hojas de sábila se lavaron las pencas con jabón y agua corriente para eliminar cualquier residuo que representara una posible contaminación. La sanitización se realizó con una solución de 200 ppm de citricidin plus (desinfectante orgánico) en la cual fueron sumergidas durante 20 minutos; Después de higienizar las pencas, se cortó 15 cm del ápice y 5 cm de la base, el acíbar se drenó colocando la penca en posición vertical durante 20 minutos. Seguidamente se eliminó la corteza haciendo un corte longitudinal de 1.0 cm en las espinas marginales. El gel se extrae con la ayuda de un cuchillo de acero inoxidable y del filete se obtuvo el jugo usando una licuadora doméstica con posterior filtración utilizando coladores de plástico.

Aplicación del tratamiento térmico al jugo de sábila. El tratamiento térmico fue realizado en base a lo descrito por diversos autores (Avalos., et al., 2000): en un rango de temperatura entre 70-80 ºC; posteriormente fue envasado en frascos de 100 ml.

Jugo de sábila con antimicrobianos naturales y tratamiento térmico almacenados a 10 y 25ºC.
La evaluación de los antimicrobianos se llevó acabo con 180 pencas de las cuales se obtuvieron 10 litros de jugo, envasándose en 160 frascos de 50 mL, seleccionando 8 frascos para cada concentración de antimicrobiano. La aplicación del tratamiento térmico (T1; 0) y la adición de propóleo (T2; 250, T3, 500, T4, 750), nisina (T5; 50, T6; 100 y T7;150) y aceites esenciales (T8; 200, T9; 250 y T10; 300), todas las concentraciones de los antimicrobianos fueron en ppm. Se evaluaron los parámetros físico-químicos y microbiológicos a 0, 15, 30, 45, 60,75 y 90 días de su almacenamiento a 10 y 25ºC.

MÉTODOS ANALÍTICOS

Acidez. La acidez se midió con 20 mL de jugo aforado a 100 mL con agua destilada recién hervida, con alícuotas de 50 mL y se valoraron con NaOH 0.1N. Los resultados se expresaron como mg/litro.

Determinación de azúcares totales. Los azúcares totales fueron determinados por el método fenol-sulfúrico (Dubois, 1956).
Determinación de pH. Se realizó usando un potenciómetro marca Denver instrument modelo 250.

Determinación de °Brix. Los sólidos solubles en el jugo de sábila, fueron determinados usando un refractómetro marca Abbe.

Determinación de densidad óptica. La densidad óptica se midió usando un espectrofotómetro spectronic 21D, a una longitud de onda de 400 nm colocando 2 mL aproximadamente de la muestra en la celda, el equipo fue calibrado con agua destilada.

Identificación del perfil cromatográfico de azúcares. La cromatografía se llevó a cabo por el método ascendente en placas de sílica gel 60 F254 de 20 x 20 cm Merk con un sistema de solventes de n- butanol-piridina-agua (6:4:3), como eluyente y fue revelado atomizando una solución de agua/ácido sulfúrico 2:1.

Conteo en placa de bacterias aerobias. La determinación de bacterias aerobias se realizó con placas 3M petrifilm para lo cual se utilizó 1mL de jugo de sábila colocado directamente sobre la placa e incubado a 35±2°C durante 48 h. El resultado se expresó como UFC/ml de muestra.

Conteo en placa de hongos y levaduras. La determinación de hongos y levaduras se realizó con placas 3M petrifilm para lo cual se utilizó 1mL de jugo de sábila colocado directamente sobre la placa e incubado a 25±1°C durante 5 días según. El resultado se expresó como UFC/ml de muestra.

Análisis estadístico. Los resultados se analizaron mediante un diseño factorial 3 (antimicrobiano) x 3 (concentraciones) x 2 (temperaturas de almacenamiento) x 7 (periodos de almacenamiento). Se realizó un análisis de varianza y prueba de Tukey mediante el paquete Statgraphics para determinar el efecto de la adición de los antimicrobianos naturales.

RESULTADOS Y DISCUSIÓN

Principales características físico-químicas y microbiológicas del jugo de sábila fresco almacenado a 10 y 25 ºC.

En cuanto al jugo de sábila fresco almacenado a 25 ºC el comportamiento de los valores de acidez titulable, densidad óptica y azúcares totales fue el mismo que el presentado en el jugo de sábila almacenado a 10ºC, sin embargo estos presentaron descomposición microbiológica en el primer día de almacenamiento.

Acidez titulable

Inmediatamente después de adicionar las diferentes concentraciones de propóleo y nisina en el jugo de sábila con tratamiento térmico, los valores de acidez no presentaron diferencia significativa, sin embargo mostraron valores significativamente menores entre 1139 y 1155.8 mg/L (p<0.05) con respecto al tratamiento T1 (aceites esenciales) y el testigo (T1) que presentaron valores promedios de 1189.3 mg/L (figuras 1a y 1b). Después de 90 días se observó que todos los tratamientos y el testigo manifestaron una disminución de la acidez, siendo el tratamiento T6 el que exhibió un mayor descenso de 1139 a 1038 mg/L. Según Guerrero, (2004) menciona que el gel de sábila almacenado a 8, 30 y 45 ºC mantuvo la acidez hasta 5 días.

Con respecto a los valores de acidez del jugo de sábila almacenado a 25 ºC con tratamiento térmico y antimicrobianos, el tratamiento T3 fue estable hasta los 90 días (1139 mg/L) y T4 durante 60 días (1155.8 mg/L), mientras que los otros tratamientos y el testigo presentaron un descenso en la acidez, siendo el tratamiento T10 el que manifestó un mayor descenso de 1189.3 a 1072 mg/mL. Entre las temperaturas 10 y 20 ºC no se encontró diferencia significativa en los valores de acidez de todos los tratamientos. Estos resultados nos indican que la aplicación de 250 y 750 ppm de propóleo en el jugo de sábila
con tratamiento térmico logró mantener la acidez durante su almacenamiento a 10 y 25° C.

Figura 1. Acidez del jugo de sábila con tratamiento térmico y antimicrobianos naturales almacenado (a) 10 y (b) 25 °C.

pH.

Después de 30 días de almacenamiento del jugo de sábila a 25° C, los tratamientos T3, T8 y T9 presentaron valores de pH significativamente menores (entre 3.25 y 3.30) en comparación al resto de los tratamientos y el testigo (entre 3.35 y 3.40). A los 60 y 90 días todos los tratamientos incrementaron el pH sin presentar significancia entre las concentraciones (valores medios; 3.47 y 3.49). Según Koc, et al., (2007) también observaron que la adición de antimicrobianos naturales en jugo de mandarina no tuvo influencia en el cambio de pH.

Azúcares totales

La actividad de los productos de gel de aloe se cree que está relacionado con el contenido de carbohidratos del interior de las células del parénquima. Los monosacáridos libres son un importante componente de la pulpa de Aloe vera, lo que representa del 20-30% del gel frescos (Yaron, 1993). En relación al contenido de azúcares totales en el jugo de sábila con tratamiento térmico y antimicrobianos naturales, en las figuras 2a y 2b se observa que en el día 0, los tratamientos con 100 ppm (T6) y 150 ppm (T7) de nísina presentaron valores significativamente menores de azúcares totales entre 3.1 y 3.2 mg/mL en comparación a todos los demás concentraciones de antimicrobianos y el testigo (valores entre 3.4 y 4.0 mg/mL).

Figura 2. Contenido de azúcares totales del jugo de sábila con tratamiento térmico y antimicrobianos naturales (a) 10 y (b) 25° C.

En el caso de los tratamientos a 10° C, se observó que a partir de los 30 días disminuyeron ligeramente los valores de azúcares totales y al término del almacenamiento se muestra una reducción significativa aproximada de 2.1 veces con respecto a sus valores iniciales. El testigo (T1) solo presentó una disminución significativa en los azúcares totales en el día 60 en comparación con los tratamientos y el valor inicial fue 2.5 veces menor después de 90 días. Todos los tratamientos a 25°C presentaron valores similares de azúcares totales hasta los 90 días.
60 días de almacenamiento; valores entre 3.1 y 3.8 mg/mL, excepto el testigo que presentó una disminución significativa de 2.6 mg/mL a los 60 días. Sin embargo, después de 90 días, en todos los tratamientos, se aprecia una reducción significativa aproximada de 2.5 veces comparados con los valores iniciales de azúcares totales.

Sólidos solubles totales (ºBrix).
En relación al contenido de sólidos solubles totales inmediatamente después de la adición de los antimicrobianos en el jugo de sábila con tratamiento térmico, en las figuras 3a y 3b, se observa que el tratamiento con 750 ppm de própolo (T4) en el jugo de sábila presentó un aumento significativo de los ºBrix (0.99) comparados con los otros tratamientos y el testigo. Este incremento puede atribuirse a los sólidos solubles totales contenidos en el própolo. Todos los tratamientos a 10 ºC, mantuvieron los valores de ºBrix de 30 a 60 días con respecto a sus valores iniciales (valores entre 0.91 y 0.97), disminuyendo después de 90 días (valores promedios de 0.89 ºBrix), siendo el tratamiento T4 con 750 ppm de própolo el que menos descenso de sólidos solubles totales presentó con respecto a los demás tratamientos.

Identificación del perfil cromatográfico de azúcares.

En el caso de los tratamientos almacenados a 25ºC, mantuvieron valores similares de ºBrix de 30 a 60 días con respecto a sus valores iniciales (valores entre 0.91 y 0.96), posteriormente estos disminuyeron en el día 90 (valores promedios de 0.87 ºBrix), notándose que el tratamiento T4 fue el que menos descenso de ºBrix presentó, mientras que el testigo fue el que más ºBrix perdió a lo largo de los 90 días de almacenamiento.

Estos resultados nos indican que la aplicación de 750 ppm de propóleo en el jugo de sábila con tratamiento térmico a 10 y 25 ºC influyó significativamente al mantener valores más altos de ºBrix que el resto de los tratamientos y el testigo durante 90 días de almacenamiento.

Identificación del perfil cromatográfico de azúcares.

La Cromatografía en capa fina es una buena técnica para analizar los carbohidratos presentes en gel de aloe, con manchas claras y definidas sobre la placa.

Los azúcares del jugo de sábila fresco, con tratamiento térmico y tratado con antimicrobianos naturales no encontrándose diferencia de este perfil puesto que en todos los casos se presentó un valor de Rf = 0.65 con manchas claras y bien definidas, manteniéndose dicho comportamiento durante los 90 días de almacenamiento. Esto indica que el perfil cromatográfico de azúcares no fue afectado por el tratamiento térmico, ni por la adición de los antimicrobianos naturales.

Estabilidad microbiológica y vida útil.

En cuanto a la carga microbiana del jugo de sábila en el testigo T1 y en los tratamientos adicionados con antimicrobianos naturales (propóleo, nisina y citridin) no se presentaron cambios significativos durante los 90 días de almacenamiento a 10 ºC al igual que en los tratamientos con nisina T5, T6 y T7, almacenados a 25 ºC. En otras investigaciones...
se ha observado que el uso de nisina, propóleo y aceites esenciales representan una buena alternativa para eliminar microorganismos y extender la vida útil de jugos de frutas; Tosi et al., 2996).

CONCLUSIONES
La aplicación del tratamiento térmico (T1) y la adición de propóleos (T2, T3, T4), nisina (T5, T6 y T7) y aceites esenciales (T8, T9 y T10) permitieron controlar la contaminación microbiológica y prolongar la vida útil del jugo de sábila hasta 90 días tanto a 10 como a 25 °C. El uso de las diferentes concentraciones de propóleos, nisina y aceites esenciales en el jugo de sábila no causó cambios significativos en las características de acidez titulable, pH, °Brix, azúcares totales, densidad óptica y en el perfil cromatográfico de azúcares.

REFERENCIAS BIBLIOGRÁFICAS
Mirzoeva OK, Grishanin RN, Calder PC. (1997). Antimicrobial action of propolis and some


