Ochoa-Velasco, Carlos Enrique; Guerrero-Beltrán, José Á.
EFECTO DE LA TEMPERATURA DE ALMACENAMIENTO SOBRE LAS CARACTERÍSTICAS DE CALIDAD DE TUNA BLANCA VILLANUEVA (Opuntia albicarpa)
Revista Iberoamericana de Tecnología Postcosecha, vol. 14, núm. 2, 2013, pp. 149-161
Asociación Iberoamericana de Tecnología Postcosecha, S.C.
Hermosillo, México

Disponible en: http://www.redalyc.org/articulo.oa?id=81329290008
La tuna (Opuntia albicarpa) es una fruta que debe refrigerarse durante su almacenamiento para disminuir el deterioro de su calidad. Tuna cultivada en Acatzingo, Puebla, México, comúnmente llamada tuna Villanueva, se almacenó a tres temperaturas (4±1, 9±2 y 28±2 °C) correspondientes a tres humedades relativas (90±4, 85±5 y 75±5 %, respectivamente). Durante el almacenamiento se evaluaron algunas propiedades fisicoquímicas (pérdida de peso, pH, sólidos solubles totales, acidez titulable, color y firmeza), enzimáticas (pectinmetilesterasa y polifenoloxidasa), antioxidantes (compuestos fenólicos y actividad antioxidante) y microbiológicas (bacterias mesófilas aerobias, mohos y levaduras), cada 7 días, hasta que la tuna presentó características inadecuadas para el consumo. La temperatura de almacenamiento afectó de manera significativa (p<0.05) parámetros de calidad de tuna Villanueva tales como pérdida de peso, color, firmeza, actividad de polifenoloxidasa en pulpa y cáscara, compuestos fenólicos y recuento microbiano. La actividad antioxidante y la actividad de pectinmetilesterasa en pulpa de tuna no presentaron diferencias significativas (p>0.05) a las diferentes condiciones de almacenamiento. Con base en los atributos de calidad visual, las tunas almacenadas a 4±1 °C tuvieron una vida útil de 35 días, mientras que a 9±2 y 28±2 °C, estas mantuvieron buena calidad durante 28 y 15 días, respectivamente.

RESUMEN

La tuna (Opuntia albicarpa) es una fruta que debe refrigerarse durante su almacenamiento para disminuir el deterioro de su calidad. Tuna cultivada en Acatzingo, Puebla, México, comúnmente llamada tuna Villanueva, se almacenó a tres temperaturas (4±1, 9±2 y 28±2 °C) correspondientes a tres humedades relativas (90±4, 85±5 y 75±5 %, respectivamente). Durante el almacenamiento se evaluaron algunas propiedades fisicoquímicas (pérdida de peso, pH, sólidos solubles totales, acidez titulable, color y firmeza), enzimáticas (pectinmetilesterasa y polifenoloxidasa), antioxidantes (compuestos fenólicos y actividad antioxidante) y microbiológicas (bacterias mesófilas aerobias, mohos y levaduras), cada 7 días, hasta que la tuna presentó características inadecuadas para el consumo. La temperatura de almacenamiento afectó de manera significativa (p<0.05) parámetros de calidad de tuna Villanueva tales como pérdida de peso, color, firmeza, actividad de polifenoloxidasa en pulpa y cáscara, compuestos fenólicos y recuento microbiano. La actividad antioxidante y la actividad de pectinmetilesterasa en pulpa de tuna no presentaron diferencias significativas (p>0.05) a las diferentes condiciones de almacenamiento. Con base en los atributos de calidad visual, las tunas almacenadas a 4±1 °C tuvieron una vida útil de 35 días, mientras que a 9±2 y 28±2 °C, estas mantuvieron buena calidad durante 28 y 15 días, respectivamente.

EFFECTS OF THE STORAGE TEMPERATURE ON QUALITY CHARACTERISTICS OF GREEN PRICKLY PEAR (Opuntia albicarpa)

ABSTRACT

Prickly pear (Opuntia albicarpa) is a fruit that need to be stored at low temperature to delay deterioration. Prickly pear, grown in Acatzingo, Puebla, México, commonly called Villanueva cultivar, was stored a three temperatures (4±1, 9±2, and 28±2 °C) corresponding to three relative humidities (90±4, 85±5, and 75±5 %, respectively). During storage, some physicochemical (weight loss, pH, total soluble solids, titratable acidity, color, and firmness), enzymatic (pectinmethylesterase and polyphenoloxidase), antioxidants (phenolic compounds and antioxidant activity), and microbiological (mesophylls and molds plus yeasts) characteristics were evaluated, every 7 days until prickly pears showed inadequate characteristics to be consumed. The storage temperature is a factor that significantly (p<0.05) affected the quality parameters of prickly pear, such as weight loss, color, firmness, polyphenoloxidase activity in pulp and peel, phenolic compounds and microbial load. Both, the antioxidant activity and pectinmethylesterase activity did not show significantly differences (p>0.05) due to the storage temperatures. Based on the visual quality attributes, prickly pears stored at 4±1 °C had a shelf life of 35 days, while at 9±2 and 4±1 °C prickly pears maintained good quality for 28 and 15 days, respectively.

INTRODUCCIÓN

La tuna (Opuntia spp) es una fruta ovoide, jugosa y dulce con múltiples semillas de color negro; posee una piel gruesa y es producida por el nopal tunero (Duru y Turker, 2005). Es una fruta perteneciente a la familia de las cactáceas que varía en forma, tamaño y color, en función de la variedad, presentando...
coloraciones que van desde el verde hasta el morado (Piga, 2004). La tuna es la cactácea más comercializada y se produce a nivel comercial en México, Italia, Sudamérica, el sur de África y el Mediterráneo (Butera et al., 2002). Una de las ventajas que presenta la tuna, es que se puede producir en regiones áridas y semiáridas debido al metabolismo crasuláceo que tiene el nopal (Andrade et al., 2007). México produce alrededor de 352,374 toneladas/año, siendo Puebla el tercer estado productor con 61,511.5 toneladas por hectárea al año (SIAP, 2011). Parte de la producción de México se destina a mercados nacionales e internacionales tales como Estados Unidos y Canadá debido a que en esos países la tuna se considera una fruta exótica (SIAP, 2011).

Ochoa y Guerrero (2010) informaron que la tuna posee altas concentraciones de compuestos bioactivos tales como compuestos fenólicos, vitamina C y pigmentos betalainínicos (tuna roja) que le confieren alta actividad antioxidante; además, posee altas concentraciones de calcio y magnesio, así como aminoácidos escasos en el reino vegetal tales como la prolina y taurina (Tesoriere et al., 2005; Galati et al., 2003). No obstante los excelentes atributos nutricionales que posee la tuna, su comercialización es baja en comparación con otras frutas debido a que la investigación para su conservación en fresco y sus productos procesados es escasa. Las diferentes características fisicoquímicas que esta posee, tales como alto pH (> 6) y sólidos solubles totales (>13 %), permiten el fácil ataque microbiano (Cantwell, 1995; Ochoa y Guerrero, 2012). Por otra parte, el periodo de producción de tuna es corto (junio-julio) y se abarata en estos meses (Esquivel, 2004; Corrales et al., 1997), lo que hace necesario el buscar diferentes métodos de conservación tanto en fresco como procesado. Por tanto, el objetivo de esta investigación fue evaluar el efecto de la temperatura de almacenamiento sobre algunas características de calidad de tuna blanca Villanueva (Opuntia albicarpa) cultivada en el Estado de Puebla, México.

MATERIALES Y MÉTODOS
Materias
Se utilizó tuna variedad Villanueva (Opuntia albicarpa) cosechada en la comunidad de San Sebastián Villanueva, Puebla, México. La tuna fue cosechada manualmente un día antes del inicio del almacenamiento. Se seleccionaron aquellas las con una coloración uniforme, sin golpes ni daños físicos y se higienizaron con una solución de cloro (200 ppm) durante 1 min. Las tunas fueron divididas en 3 lotes, se empaquetaron en cajas de polietileno cristal de 15 x 15 x 10 cm y se almacenaron a temperaturas de 4±1, 9±2 y 28±2°C, correspondientes a humedades relativas de 90±4, 85±5 y 75±5 %, respectivamente.

Métodos
Características fisicoquímicas. Se determinó el pH, los sólidos solubles totales y la acidez titulable mediante los métodos 981.12, 932.12 y 942.15 de la AOAC (2000), respectivamente.

Vitamina C. Se determinó utilizando el método 967.21 de la AOAC (2000).

Índice de madurez. Se calculó como el cociente entre sólidos solubles totales (% p/p) y la acidez titulable (% p/p de ácido cítrico) de la fruta.

Pérdida de peso. Se evaluó en tuna entera, pulpa y cáscara. La pérdida de peso se calculó en base a la diferencia entre el peso inicial y el final con ayuda de una balanza Scout Pro (Ohaus Co., Zurich, Suiza).

Color. En pulpa y cáscara se evaluaron los parámetros L (luminosidad), a (+ rojo, – verde) y b (+ amarillo, – azul), de la escala de Hunter, utilizando un colorímetro Colorgard System 05 (Hunter Lab., Reston, VA, EUA) en modo de reflectancia. Con los parámetros de color se calculó el cambio neto de color (ΔE) mediante la siguiente ecuación:
La mezcla (extracto enzimático) se mezclaron con 5 ml de buffer McIlvaine (pH 6.5). La mezcla (extracto enzimático) se centrífugó a 4000 rpm durante 40 minutos a 4°C. En una celda de cuarzo, se mezclaron 0.5 ml del extracto enzimático, 1 ml de solución de catecol (0.175 M) y 2 ml de buffer citrato-fosfato (McIlvaine). Se midió la absorbancia a 420 nm usando un espectrofotómetro UV-Visible modelo 2800H (UNICO, NJ, EUA) cada 10 segundos durante 3 minutos. Se graficó la absorbancia con respecto al tiempo y la porción lineal de la gráfica se utilizó para hacer una regresión lineal para determinar la actividad de la polifenoloxidasa. Una unidad de actividad enzimática (UAE) de pectinmetilesterasa se define como la cantidad de enzima que se requiere para producir un cambio de absorbancia de 0.001 Uabs/min*g (o mL).

\[UAE = \frac{m \times 60 \times V}{v \times 0.001 \times g} \]

donde m es la pendiente (Uabs/s), V es el volumen total muestra y buffer (mL), v es el volumen de extracto enzimático involucrado en la reacción (mL) y g es la cantidad de muestra (g).

Polifenoloxidasa (PPO). Se determinó siguiendo la técnica propuesta por Pizzocaro et al. (1993) con modificaciones. Se tomaron 5 g de pulpa o cáscara homogeneizadas y se mezclaron con 5 ml de buffer McIlvaine (pH 6.5). La mezcla (extracto enzimático) se centrífugó a 4000 rpm durante 40 minutos a 4°C. En una celda de cuarzo, se mezclaron 0.5 g de Na2CO3 al 20% se mezcló perfectamente y se incubó durante 1 hora en la oscuridad a temperatura ambiente. La absorbancia se leyó a 765 nm y se calculó el contenido de compuestos fenólicos usando los datos de una curva estándar. La curva estándar se preparó tomando alícuotas de una solución estándar de ácido gálico (33 mg de ácido gálico/100 ml de agua destilada). Para el cálculo del contenido de compuestos fenólicos se utilizó la siguiente ecuación:

\[AG = \frac{A - b}{m} \times 100 \]

donde AG es contenido de ácido gálico (mg de ácido galico/mL), A es la absorbancia (Abs), m
es la pendiente (32.64 Abs/mg de ácido gálico) de la curva estándar ($R^2 = 0.9987$) y b es el intercepto (0.0127).

Actividad antioxidante. La actividad antioxidante se determinó por el método ABTS usando la metodología propuesta por Kuskoski et al. (2004) con modificaciones. Se formó el radical ABTS+ colocando 0.0033 g de persulfato de potasio y 0.0194 g del reactivo ABTS (2,2'-azinobis-(3-ethylbenzotiazolin-6-ácido sulfónico) en un frasco de vidrio ambar. Se añadieron 5 mL de agua destilada. La mezcla se agitó perfectamente y se dejó reposar durante 16 horas en la oscuridad a temperatura ambiente. Se realizó una mezcla de etanol absoluto con el radical ABTS+ (solución de radical ABTS+:etanol, aprox. 1:11) hasta alcanzar una absorbancia de 0.70±0.02 a 754 nm. Se midieron 3,920 µL de la solución de radical ABTS:etanol, y se transfirieron a una celda de cuarzo, se midió la absorbancia usando un espectrofotómetro UV-Visible marca UNICO (United Products & Instruments, Inc., EE.UU.) y se registró la absorbancia inicial (Ai). Se adicionaron posteriormente 80 µL de jugo de tuna, se mezclaron perfectamente y al terminar la reacción (7 minutos después) se registró la absorbancia final (Af). Con los datos obtenidos se calculó el porcentaje de inhibición y la actividad antioxidante mediante el uso de las siguientes ecuaciones:

$$I = \frac{A_i - A_f}{A_i} \times 100$$

$$AA = \frac{I - b}{m} \times 100$$

donde I es la inhibición (%), AA es la actividad antioxidante (mg de Trolox/mL de jugo), m es la pendiente (3863.6 Abs/mg de Trolox) de la curva estándar ($R^2=0.9981$) y b es el intercepto (-1.06).

Carga microbiana. Se evaluaron las unidades formadoras de colonias por centímetro cuadrado (UFC/cm²) en cáscara de tuna para bacterias mesófilas aerobias (BMA) y mochos-levdaduras (ML). Se midió el área superficial promedio de diez tunas para poder cuantificar las UFC/cm². Se colocó una tuna en un bolsa estéril con 10 mL de agua peptonada y se realizó un lavado alrededor de la tuna durante 15 segundos. Posteriormente, se tomó 1 mL del agua de lavado para realizar las diluciones necesarias para el conteo microbiano por medio de siembra en profundidad en placa. Se utilizó agar nutritivo y agar papa dextrosa acidificado con ácido tartárico al 10 % para el conteo de BMA y ML, respectivamente. Las BMA se incubaron en una estufa a 35±2°C y se contaron en un lapso de 24-48 horas; los ML se contaron después de tres días de incubación a temperatura ambiente (25±2°C).

Análisis estadístico. Los resultados fueron analizados mediante análisis de varianza (p<0.05) utilizando el programa Minitab 14 (Minitab, Inc., PA, EE.UU.).

RESULTADOS Y DISCUSIÓN

Características fisicoquímicas de tuna fresca

En el Cuadro 1 se presentan los datos de la caracterización fisicoquímica de la tuna blanca Villanueva. El peso de la tuna entera se encuentra en los límites de lo reportado por Cantwell (1995), ella reporta valores de 100 a 200 g dependiendo de la variedad de tuna. Se observa que el porcentaje de la cáscara de tuna es muy elevado (47.39±3.78%) al ser comparado con otras frutas; sin embargo, El-Samahy et al. (2006) reportaron valores de 41.53-49.63 y 39.23-44.53% para pulpa y cáscara de tuna, respectivamente. El pH, los sólidos solubles totales y acidez titulable se encuentran en el intervalo de lo reportado por diferentes investigadores. Askar y El-Samahy (1981), Gurrieri et al. (2000), Piga (2004) y Sawaya et al. (1983) reportaron que el valor de pH se encuentra entre 5.3 y 7.1, los sólidos solubles totales entre 10.7 y 17% y la acidez titulable entre 0.01 y 0.18% (equivalentes de ácido cítrico). El contenido de vitamina C es similar a lo reportado por Tee et al. (1988) para frutas cítricas tales como el limón,
naranja y lima; asimismo se encuentra en el rango de lo reportado por Butera et al. (2002), Piga (2004) y Stintzing et al. (2001) para otras variedades de tuna (18-30 mg de ácido ascórbico/100 g de pulpa).

Cuadro 1. Características fisicoquímicas de tuna blanca.

<table>
<thead>
<tr>
<th>Características</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso tuna entera (g)</td>
<td>99.17±11.12</td>
</tr>
<tr>
<td>Peso pulpa (g)</td>
<td>51.60±8.4</td>
</tr>
<tr>
<td>Peso cáscara (g)</td>
<td>47.30±3.8</td>
</tr>
<tr>
<td>pH</td>
<td>5.37±0.0</td>
</tr>
<tr>
<td>Sólidos solubles totales</td>
<td>13.50±0.3</td>
</tr>
<tr>
<td>Acidez titulable (% ácido cítrico)</td>
<td>0.07±0.0</td>
</tr>
<tr>
<td>Índice de madurez</td>
<td>194.73±2.1</td>
</tr>
<tr>
<td>Vitamina C</td>
<td>34.36±13.0</td>
</tr>
</tbody>
</table>

Efecto de la temperatura de almacenamiento en características de la tuna blanca Villanueva

Características fisicoquímicas. Durante el almacenamiento, el pH de la tuna se incrementó de manera significativa (p<0.05) a todas las temperaturas de almacenamiento; se observaron valores que incrementaron de 5.37±0.03 a 6.3±0.12, 6.56±0.05 y 5.86±0.1 para las temperaturas de 28, 9 y 4°C, respectivamente. Similares resultados fueron observados por Piga et al. (1996). Ellos informaron que en tuna variedad “Gialla” se incrementó el pH de 6.28 a 6.6 después de 6 semanas de almacenamiento a 6°C. Los sólidos solubles totales iniciales (13.50±0.3 %) disminuyeron (11.60±0.20%) y se incrementaron (14.10±0.25%) de manera significativa (p<0.05) en la tuna almacenada a 28 y 9°C, respectivamente. En tuna almacenada a 4°C, los sólidos solubles totales se mantuvieron constantes (13.20±0.10-13.50±0.26%) durante 28 días. Barrios et al. (2003) reportaron que la tuna variedad burrona no presentó cambios durante 75 días de almacenamiento a 16-17°C; observaron una concentración de sólidos solubles totales en un intervalo de 11.25 a 11.6%. Piga et al. (1996) reportaron que las tunas almacenadas durante 6 semanas presentaron una disminución gradual de los sólidos solubles totales (14.10 a 10.70%).

Pérdida de peso. En la Figura 1 se presenta la pérdida de peso (PP) de tuna durante su almacenamiento. Se observa que el tiempo y la temperatura de almacenamiento son factores que afectan de manera significativa (p<0.05) la PP de la tuna blanca. Después de 28 días de almacenamiento la PP a 28 °C fue de 19.02±2.59 %, mientras que después de 35 días de almacenamiento, a 9 y 4 °C, la PP fue de 19.09±1.36 y 13.03±0.10 %, respectivamente. Diferentes investigadores han concluido que la pérdida de peso depende de las condiciones de almacenamiento y de la variedad de tuna. Por ejemplo, Corrales y Hernández (2005) evaluaron la pérdida de peso en diferentes variedades de tuna y reportaron que en tuna amarilla “Milpa Alta”, después de 20 días de almacenamiento (10 °C y 90 % HR), la pérdida de peso fue de 11.01 %. No obstante, Barrios et al. (2003) reportaron una pérdida de peso de 5 % después de 30 días de almacenamiento a temperaturas de 16.1-17.1 °C y HR de 55-70 %.

En la Figura 1 se presenta también el porcentaje de PP en pulpa y cáscara de tuna. Se aprecia que el porcentaje de peso de la pulpa de tuna “aumenta”, mientras que el de la cáscara tiende a “disminuir”; esto indica que la PP se da principalmente en la cáscara de tuna. Gonzales et al. (2001) reportaron una pérdida de peso mayor en cáscara de tuna variedad “burrona” cuando se almacenó a
temperatura ambiente, comparada con aquella almacenada a 4 °C. Estadísticamente se observó que la temperatura no es un factor significativo (p>0.05) en la pérdida de peso en pulpa y cáscara de tuna, no así el tiempo de almacenamiento.

En el Cuadro 2 se presentan los parámetros de la regresión lineal de pérdida de peso de tuna entera, pulpa y cáscara. Se observa un ajuste lineal para la tuna entera (Figura 1), obteniéndose correlaciones superiores a 0.980. En la pulpa y cáscara el ajuste lineal no es adecuado, únicamente a la temperatura de 4 °C se alcanzan correlaciones superiores a 0.8; sin embargo, como se mencionó anteriormente (Figura 1), la tendencia es disminución de peso en cáscara y aumento de peso en pulpa.

<table>
<thead>
<tr>
<th>Temperatura</th>
<th>m</th>
<th>b</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuna entera</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28°C</td>
<td>-0.648</td>
<td>99.35</td>
<td>0.989</td>
</tr>
<tr>
<td>9°C</td>
<td>-0.604</td>
<td>99.66</td>
<td>0.995</td>
</tr>
<tr>
<td>4°C</td>
<td>-0.379</td>
<td>99.87</td>
<td>0.998</td>
</tr>
<tr>
<td>Pulpa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28°C</td>
<td>0.29</td>
<td>57.31</td>
<td>0.272</td>
</tr>
<tr>
<td>9°C</td>
<td>0.388</td>
<td>54.71</td>
<td>0.764</td>
</tr>
<tr>
<td>4°C</td>
<td>0.323</td>
<td>53.28</td>
<td>0.859</td>
</tr>
<tr>
<td>Cáscara</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28°C</td>
<td>-0.292</td>
<td>42.65</td>
<td>0.275</td>
</tr>
<tr>
<td>9°C</td>
<td>-0.389</td>
<td>45.31</td>
<td>0.768</td>
</tr>
<tr>
<td>4°C</td>
<td>-0.322</td>
<td>46.65</td>
<td>0.851</td>
</tr>
</tbody>
</table>

Color. En la Figura 2 se presentan los valores de los parámetros L, a y b de pulpa y cáscara de tuna durante el almacenamiento a diferentes temperaturas. En pulpa: durante el tiempo de almacenamiento, se observa que el parámetro de luminosidad (L) se incrementa ligeramente en todos los tratamientos; sin embargo, este incremento no es significativo (p>0.05) en ningún tratamiento. Por otra parte, los parámetros de color a y b tienden a disminuir y a aumentar durante el tiempo de almacenamiento, respectivamente, lo que significa que los colores verde y amarillo se incrementan. Estos resultados son similares a los reportados por Mercado et al. (2007). Ellos observaron que después de 60 días de almacenamiento a 6-8°C, el color verde original cambió a un color verde más oscuro en tuna verde “esmeralda” y a un color verde amarillo en el xoconostle. Después de 35 días de almacenamiento se observó un efecto significativo (p<0.05) de la temperatura (9 y 4°C) de almacenamiento sobre los parámetros de color a y b. La tuna almacenada a 28°C se analizó solo durante 21 días debido a que presentó un estado inaceptable después de este tiempo de almacenamiento. En cáscara: al igual que para pulpa de tuna se observó que la cáscara presentó un incremento de los parámetros L (más clara) y b (más amarilla), mientras que el parámetro a se mantuvo constante durante el almacenamiento a 9 y 4°C. Sin embargo, únicamente el parámetro de color a fue afectado de manera significativa (p<0.05) después de 21 días de almacenamiento a 28°C (-11.25 a -2.0). Este mismo efecto fue reportado por Mercado et al. (2007), Corrales et al. (1997) y Barrios et al. (2003) en las variedades “esmeralda”, “cristalina” y “burrona”, respectivamente. Este cambio en color pudo deberse al pardeamiento que se presentó en la cáscara de tuna y a la disminución en la concentración de los pigmentos que absorben el color rojo. Después de 35 días de almacenamiento se observó un efecto significativo (p<0.05) del tiempo de almacenamiento en los parámetros de color L y b en tuna almacenada a 9 y 4 °C. El cambio neto de color (ΔE) en cáscara de tuna fue de 16.24±6.67 a 28 °C después de 21 días de almacenamiento, mientras que para 9 y 4 °C fue de 5.33±0.82 y 6.31±0.83, respectivamente, a los 35 días de almacenamiento. Lo anterior confirma que la temperatura de 28°C afectó más el color de la tuna observándose mayor cambio de color.

Firmeza. En la Figura 3 se presentan los valores de resistencia a la penetración para pulpa y cáscara de tuna. Se observó una
Efecto de la temperatura de…

Carlos E. Ochoa-Velazco y José A. Guerrero-Beltrán (2013)

Disminución significativa (p<0.05) de la firmeza en pulpa y cáscara de tuna almacenada a 28°C a lo largo de 21 días de almacenamiento. Después de 35 días de almacenamiento no se observó efecto significativo (p>0.05) en la firmeza en pulpa y cáscara de tuna almacenada a 9 y 4°C. Probablemente, la pérdida de firmeza en pulpa de tuna se debió a la hidrólisis de almidón y de pectinas en la membrana celular. Barrios et al. (2003) y Mercado et al. (2007) reportaron una menor resistencia a la penetración en pulpa de tuna a lo largo del tiempo de almacenamiento. Por otra parte, Vargas et al. (2005) reportaron un incremento en la textura de pulpa de pitahayas almacenadas a 4°C en comparación con las almacenadas a 8°C. En la cáscara de tuna almacenada a 28°C, la pérdida de firmeza pudo deberse a la baja humedad relativa, comparada con las otras temperaturas de almacenamiento. Mercado et al. (2008) y Corrales y Hernández (2005) evaluaron la fuerza de penetración en cáscara de tuna y reportaron que las propiedades relacionadas con la resistencia de los tejidos que conforman la cáscara de la tuna tienden a disminuir durante el almacenamiento.

Figura 2. Parámetros de color en pulpa (a, c y e) y cáscara (b, d y f) de tuna blanca almacenada a diferentes temperaturas.

Pectinmetilesterasa (PME). En la Figura 4 se presentan los valores de PME obtenidos a tres temperaturas de almacenamiento. La actividad de la PME disminuyó significativamente (p<0.05) durante los primeros 15 días de almacenamiento.
Posterior a este tiempo no se observaron cambios significativos (p>0.05) en la actividad enzimática. Gurrieri et al. (2000) reportaron bajos valores de actividad de PME en jugo de tuna, comparado con otras frutas, y atribuyeron esto a que la enzima puede estar presente en cantidades muy pequeñas o bien que no es muy eficiente en la degradación de la pectina. Ochoa (2007) y Márquez (2009) describen a estas enzimas como responsables del ablandamiento en frutas causando pérdida de textura y excesivo ablandamiento debido a degradación de las sustancias péticas de la pared celular.

Carrillo et al. (2002) reportaron la actividad de diferentes enzimas hidrolíticas en variedades de tuna “naranjona” y “charola”. Ellos reportaron que la actividad enzimática en tuna “naranjona” aumentó durante los primeros seis días de almacenamiento y posteriormente se mantuvo constante. Mientras que en tuna “charola”, la actividad enzimática se mantuvo sin variación durante 48 días de almacenamiento a 18°C.

Polifenoloxidasa. En la Figura 5 se presentan los datos de la actividad de la PPO en pulpa y cáscara de tuna. El tiempo y la temperatura de almacenamiento son factores que afectan de manera significativa (p<0.05) la actividad de dicha enzima ya que a 28 °C la actividad enzimática es mayor que a las otras dos temperaturas. La tuna Villanueva entera presentó comportamientos irregulares, la pulpa presentó oscurecimiento en el pedúnculo a las tres temperaturas de almacenamiento; esto pudo deberse, muy probablemente, a la PPO. Sin embargo, a temperatura de 9 y 4 °C el oscurecimiento observado fue menor, aunque se observaron pequeñas pigmentaciones en la cáscara, que no se presentaron a temperatura de 28 °C. Vela et al. (2001) reportaron que la actividad de la PPO en mango fue mayor a temperaturas de refrigeración (6°C) que a 25°C.
en contacto con la PPO produjeron melanoidinas (Artés y Artés-Hernández, 2003; Vela et al., 2001). Sin embargo, Balois et al. (2007) reportaron que la disminución de la temperatura es un factor inhibitorio de la actividad de la PPO, demostrando que en pitahayas almacenadas a 3 °C, la actividad fue significativamente menor que en aquellas almacenadas a 7, 11 y 22 °C.

Compuestos fenólicos. En el Cuadro 3 se presenta el contenido de compuestos fenólicos en pulpa de tuna. Se observa una disminución de los compuestos fenólicos con el paso del tiempo de almacenamiento; sin embargo, únicamente a 28°C, y después de 21 días, la disminución fue significativa (p<0.05). Diferentes autores reportan que la polifenoloxidasa actúa en los compuestos fenólicos de la tuna, causando su oxidación y por lo tanto su disminución (Balois et al., 2007; Aguilar et al., 2007; García et al., 2006). Stintzing et al. (2005) evaluaron el contenido de compuestos fenólicos en diferentes variedades de tuna (blanca, naranja, roja y purpura). Ellos reportaron que la tuna blanca presentó el menor valor de compuestos fenólicos (24.2±13.4 mg ácido gálico/100 mL de jugo) mientras el mayor contenido lo presentó la tuna purpura (66 ± 35.8 mg ácido gálico/100 mL de jugo). Por otro lado, Carrasco y Encina (2008) reportaron valores de 52 mg de ácido gálico/100 g de muestra. Estos valores son similares a los presentados en este estudio para la tuna Villanueva. Galati et al. (2003) reportaron que la isorhamnetina, rutina y kaempferol son los principales componentes de los compuestos fenólicos en tuna siciliana. Las variaciones se deben probablemente a la variedad de tuna y a la técnica utilizada. Sin embargo, Stintzing et al. (2005) concluyeron que el contenido de compuestos fenólicos es lo que contribuye en gran medida a la actividad antioxidante de las diferentes variedades de tuna.

Actividad antioxidante. En el Cuadro 3 se presentan los valores de actividad antioxidante en pulpa de tuna variedad Villanueva. Durante el tiempo de almacenamiento, la actividad antioxidante se mantuvo prácticamente constante y sin diferencia significativa (p>0.05). Butera et al. (2002) reportaron la actividad antioxidante de tres variedades de tuna (amarilla, roja y blanca) encontrando que la tuna de coloración amarilla contenía 5.31±0.49, la roja 4.20±0.51 y la blanca 4.36±0.41 μmol equivalentes de Trolox/g de pulpa. Stintzing et al. (2005) reportaron valores de 3.31±0.13 y 2.24±0.09 μmol equivalentes de Trolox/mL de jugo y pulpa de tuna blanca, respectivamente. Los valores obtenidos en este estudio se encuentran alrededor de 0.76-0.94 μmol equivalentes de Trolox/g de jugo de tuna; valores que están por debajo de los reportados por Butera et al. (2002) y Stintzing et al. (2005). Carrasco y Encina (2008) estudiaron tres variedades de tuna (roja, anaranjada y blanca), reportaron que la tuna roja contiene 651 μg equivalentes de Trolox/g de tejido (2.604 μmol equivalentes de Trolox/g de tejido). Carrasco y Encina (2008) evaluaron además la actividad antioxidante mediante el método de DPPH reportando porcentajes de inhibición de 77.65, 41.65 y 34.20 % para tuna roja, anaranjada y blanca, respectivamente. Ellos concluyeron que la actividad antioxidante está directamente relacionada con la variedad de tuna así como con el contenido de pigmentos.

Carga microbiana. El crecimiento de bacterias mesófilas aerobias, mohos y levaduras se presenta en la Figura 6. No se observó incremento significativo (p>0.05) de bacterias mesófilas aerobias ni de mohos y levaduras durante 14 días de almacenamiento. Después de 28 días, las tunas almacenadas a 28°C presentaron un mayor (p<0.05) crecimiento de bacterias (2002±129 UFC/cm²) y mohos y levaduras (3094±257 UFC/cm²). En las tunas almacenadas a 9°C el crecimiento fue de 137±64 y 110±13 UFC/cm², para bacterias mesófilas aerobias y mohos y levaduras,
respectivamente. El menor crecimiento (p<0.05) de bacterias mesófilas aerobias (18±6 UFC/cm2) lo presentó la tuna almacenada a 4°C, mientras que a esta misma temperatura el crecimiento de mohos y levaduras fue de 364±64 UFC/cm². Las frutas y hortalizas normalmente deben de almacenarse a bajas temperaturas, con la finalidad de aumentar su vida útil (a menos que el vegetal sufra daño por frío). La temperatura afecta no sólo al desarrollo de microorganismos, sino también a todos los procesos químicos y bioquímicos en los alimentos (Jobling, 2001; Aguayo, 2003; Márquez, 2009). Durante el almacenamiento de tuna variedad burrona, Gonzales et al. (2001) informaron que los mohos se presentaron hasta el día 60 de almacenamiento a 4°C, mientras que la tuna almacenada a 28°C el crecimiento de mohos y levaduras se presentó a los 45 días de almacenamiento.

CONCLUSIONES

El almacenamiento de tuna es un reto importante si se pretende tener frutos de buena calidad durante períodos prolongados, ya que existen diversos factores que afectan su calidad. Las bajas temperaturas limitan los cambios en pérdida de peso, color, actividad de la polifenoloxidasa, textura (cáscara), compuestos fenólicos y crecimiento microbiano. La actividad antioxidante y la actividad de la pectinmetilésteras no fueron afectadas por la temperatura de almacenamiento. La temperatura de almacenamiento que mejor mantuvo las características de la tuna Villanueva fue la de 4°C, manteniéndose en buen estado (físico) hasta 42 días de almacenamiento. A partir de este tiempo, la deshidratación fue excesiva y la fruta era física y sensorialmente inaceptable.

AGRADECIMIENTOS

Este estudio fue financiado por el Consejo Nacional de Ciencia y Tecnología (CONACyT) con el proyecto “Evaluación composicional y caracterización fisicoquímica y/o reológica de productos frescos y/o procesados con

Cuadro 3. Actividad antioxidante y compuestos fenólicos en pulpa de tuna.

<table>
<thead>
<tr>
<th>Tiempo (días)</th>
<th>Compuestos fenólicos (mg Trolox/100 mL)</th>
<th>Actividad antioxidante (mg Ácido Gálico/100 mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>28°C</td>
<td>9°C</td>
</tr>
<tr>
<td>0</td>
<td>39.8±0.5a</td>
<td>39.8±0.5a</td>
</tr>
<tr>
<td>7</td>
<td>40.7±2.0a</td>
<td>35.4±1.3a</td>
</tr>
<tr>
<td>14</td>
<td>42.2±1.4a</td>
<td>39.3±3.5a</td>
</tr>
<tr>
<td>21</td>
<td>33.2±0.2b</td>
<td>34.0±0.3a</td>
</tr>
<tr>
<td>28</td>
<td>--</td>
<td>35.5±0.3a</td>
</tr>
</tbody>
</table>

a: Letras diferentes entre renglones en una misma columna indican diferencia significativa (p<0.05).

![Gráfico 6. Crecimiento microbiano en tuna blanca almacenada a diferentes temperaturas.](image-url)
tecnologías emergentes de frutas cultivadas en el Sureste de Méxicoa clave 52743-2007. El autor Carlos Enrique Ochoa Velasco agradece al CONACyTb y a la Universidad de las Américas Puebla (UDLAP) por el financiamiento recibido para completar sus estudios de doctorado.

REFERENCIAS BIBLIOGRÁFICAS

Corrales, J. y J. Hernández. 2005. Cambios en la calidad postcosecha de variedades de...
tuna con y sin semilla. Revista Fitotecnia Mexicana. 28:9-16.
Mercado, J., M. López, G. Martínez, J. Sarahí y S. Arévalo. 2007. Estudio de las propiedades físicoquímicas de las variedades de tuna rojo pelón (Opuntia ficus-indica), morada, reina (Opuntia amylacea) y Xoconostle (Opuntia matudae scheinvar) bajo almacenamiento...
Efecto de la temperatura de...
Carlos E. Ochoa-Velazco y José A. Guerrero-Beltrán (2013)

