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Resumen— La transformada de Fourier posee una alta 
correlación con el análisis físico de la óptica. Este trabajo 
busca presentar la relación que existe entre la difracción de la 
luz a través de una ranura larga bajo los criterios de 
Fraunhofer y las posibilidades del análisis mediante 
complementario mediante el tratamiento de imágenes. 
 
Palabras clave— análisis,  difracción, fourier, fraunhofer, 
imagen,  luz, óptica, procesamiento, ranura. 

 
Abstract— The Fourier transform provides a physical link 
with optical theory. This work presents a simple relationship 
but valuable academically, between the diffraction of light 
through a long slit under the Fraunhofer criteria and 
possibilities of its complementary analysis using imaging 
processing. 
 
Key Word — analysis, diffraction, fourier, fraunhofer, image, 
light, optics, processing, slot 
 

I. INTRODUCCIÓN 
 

El análisis de Fourier trata sobre  el  estudio matemático de 
la forma en la que funciones generales se pueden 
representar o aproximar mediante  sumas simples de 
funciones trigonométricas de tipo seno y coseno.  
 
A través de la experimentación se ha encontrado que desde 
el punto de vista físico el fenómeno de difracción permite 
descomponer una onda de la misma forma en que lo hace 
Fourier a través de su transformada. 
 
En este sentido, el presente artículo busca evidenciar el 
alcance del tratamiento digital de imágenes para el  análisis 
de datos obtenidos a partir de una muestra experimental 
fotografiada de la difracción de Fraunhofer por una ranura 
simple. 
 
En este documento se recurre inicialmente a definir 
algunos conceptos físicos y matemáticos relevantes para el 

lector y posteriormente se presenta el análisis de datos y su 
posterior comparación con modelos físicos y matemáticos 
estudiados en la literatura consultada. 

II. CONTENIDO 
 

A. Difracción 

La Difracción consiste en la dispersión y curvado de las 
ondas cuando estas encuentran un obstáculo o una abertura; 
si una abertura (u obstáculo) es grande en comparación con 
la longitud de onda de la onda, el efecto de la difracción es 
pequeño, y la onda se propaga en línea recta, como si se 
tratara de un haz de partículas; sin embargo, cuando el 
tamaño de la abertura (u obstáculo) es comparable a la 
longitud de onda, la difracción es importante y la onda se 
dispersa como si procediese de una fuente puntual 
localizada en la abertura.  
 
La difracción es un fenómeno asociado a todo tipo de 
ondas, desde ondas sonoras, ondas en la superficie de un 
fluido, hasta ondas electromagnéticas como la luz y las 
ondas de radio.  
 
El fenómeno de la difracción es de tipo interferencial y 
como tal implica la superposición de ondas coherentes 
entre sí.  
 
Se puede afirmar que la difracción se produce cuando la 
longitud de onda es mayor que las dimensiones del objeto 
con que interactúa dicha onda, por tanto, los efectos de la 
difracción disminuyen hasta hacerse indetectables a medida 
que el tamaño del objeto aumenta comparado con la 
longitud de onda, tal como se indica en [1]. 
 
 

1. Difracción de Fraunhoffer[1][2] 

De acuerdo con el Principio de Huygens cuando una onda 
incide sobre una ranura, todos los puntos de su plano se 
convierten en fuentes secundarias de ondas, emitiendo 
nuevas ondas, llamadas ondas difractadas, por lo que la 
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explicación del fenómeno de la difracción no es 
cualitativamente distinto del de interferencia. 

 
El caso más sencillo de difracción corresponde a la 
difracción de Fraunhofer para una ranura simple, situación 
en la que el obstáculo es una ranura estrecha y larga de 
modo que es posible ignorar el efecto de los extremos, tal 
como se muestra en la Figura 1 (la cual no se encuentra a 
escala, ya que la apertura a de la ranura es del orden de los 
milímetros, mientras que la distancia D a la pared está en 
metros).  
 

 
Figura 1. Diagrama para la determinación de la difracción para 
una ranura. Esta figura no se encuentra a escala real, por lo que 
posee una zona comprimida [1]. 
 
 

B. Transformada de Fourier (FT)[7][8] 

La Transformada de Fourier es un método de 
procesamiento  que permite descomponer y extraer una 
señal  en sus diferentes componentes de amplitud,  
frecuencia y fase para su posterior análisis y tratamiento. 
 
La función se puede definir usualmente en el tiempo como  
 como se tratará para el caso) (ݔ)݂ o en la posición ,(ݐ)݂
presente), y posteriormente se transforma al dominio de la 
frecuencia como (ݑ)ܨ; a esta última función es la que se 
denomina Transformada de Fourier [1].  
 
Las ecuaciones mostradas en (1) presentan la definición de 
la Transformada de Fourier (ݑ)ܨ y su inversa ݂(ݔ). 
 

   




 dxexfF xj 2
 

    dxeFxf xj 2




  

(1) 

 
Estas ecuaciones se pueden extender a dos dimensiones 
como se ilustra en las ecuaciones mostradas en (2) donde  
y   son  variables de frecuencia. 

 

      




 dxdyeyxfvF jvyx 2,,  

      




 dvdevFyxf jvyx  2,,  

 

(2) 

1. Transformada Discreta de Fourier (DFT) 
 

En las aplicaciones de ingeniería, como el tratamiento de 
señales, se considera el proceso de manera discreta y no 
continua, puesto que los sistemas de adquisición de datos 
operan de manera digital, ya que sólo se poseen datos 
discretos resultantes de una captura.  
 
La DFT se desarrolló  con el fin de trabajar con ella en 
sistemas reales discretos a fin de optimizar el desempeño a 
la hora de calcular la transformada [2]. 
 
Las  ecuaciones (3) presentan la definición de la 
transformada discreta de Fourier (ݑ)ܨ y su inversa ݂(ݔ) en 
una dimensión. 
 

   





1

0

/21 N

x

Nxjexf
N

F   

   





1

0

/2N NxjeFxf


  

 

Con  = 0, 1, 2, …, N-1  

(3) 

 
Las ecuaciones mostradas en (3), con (ݑ)ܨ y su inversa 
 se pueden extender para el caso de la transformada ,(ݔ)݂
discreta de Fourier en dos dimensiones.  
 
La FT en 2D (ݒ,ݑ)ܨ y su inversa ݂(ݔ,  se muestran en la (ݕ
ecuación (4). 
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Con:  = 0, 1, 2, …, N-1  

         v = 0, 1, 2, …, M-1 

(4) 

 
2. Transformada Rápida de Fourier (FFT) 
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Como el número de operaciones efectuadas por la DFT 
puede resultar altamente demandante en tiempo y recursos 
del sistema, se hace necesaria la implementación de un 
algoritmo recursivo que disminuya de manera exponencial 
el número de operaciones efectuadas por la DFT; esto 
motiva la aparición de nuevos métodos de análisis como la 
FFT. 
 
La FFT es el algoritmo que se utiliza para realizar la DFT 
de una forma eficiente y rápida; lo que se consigue con este 
algoritmo es simplificar enormemente el cálculo de la DFT 
introduciendo “atajos” matemáticos para reducir 
drásticamente el número de operaciones. 
 
 

3. Transformada Óptica de Fourier 
 

La Transformada óptica de Fourier es un término 
comúnmente usado por muchos autores para identificar el 
uso de la transformada de Fourier a fin de describir y 
analizar las situaciones propias de la óptica ondulatoria [2]. 
 
 

C. Cálculo del patrón de difracción para una ranura 
simple[2][3][4][6] 

 
Para obtener una expresión para el patrón de difracción 
formado para una ranura, se hace uso del principio 
Huygens – Fresnel, el cual indica que cada punto sobre la 
ranura es una fuente de pequeñas ondas esféricas con 
amplitudes y fases determinadas por la onda incidente. 
 
 Estas pequeñas ondas secundarias se propagan en todos 
los ángulos e interfieren en cada punto en el plano de 
observación para determinar la amplitud de la onda 
difractada; para ello se toma el frente de onda incidente 
paralelo al plano de la ranura, mientras que el plano de 
observación se localiza en el infinito (Difracción de 
Fraunhoffer).  
 
Una aproximación de la anterior descripción puede 
observarse en el dibujo de la Figura 3, donde se muestran 
los planos de la ranura y de observación.  
 
Desde la ranura parten dos rayos, el primero de ellos sigue 
la trayectoria OO’ y el segundo la trayectoria  PP’.  
 
El punto P sobre el plano de la ranura se especifica 
mediante las coordenadas (ݔ,  ,’mientras que P ;(ݕ
localizada sobre el plano de observación se presenta a 
través de (ݔ’,   .(’ݕ
 
Como se considera que el plano de observación se 
encuentra en el infinito, entonces la distancia ܱܲ’ es muy 
grande, paralela e igual a ܱܱ’, luego la diferencia de 

camino entre los rayos ܱܲ’ y ܲܲ’ es la distancia ܱܵ, donde, 
se considera que ܲܵ es perpendicular a ܱܲ’. 
 

 
Figura 2. Diagrama ampliado de la proyección del vector ܮሬ⃗  sobre 
el vector ሬܴ⃗ . 
 
La magnitud ݎ se puede calcular a partir del producto punto 
al determinar la proyección del vector ܮሬ⃗  sobre el vector  ሬܴ⃗  
donde los vectores se definen en la ecuación (5) (véase la 
Figura 2): 
 

' 'x y z

x y

R x a y a za

L xa ya

  

 

   

    (5) 

 
Para el cálculo de producto punto se procede mediante las 
relaciones mostradas en (6): 
 

. cos

cos

R L R L

r L









   

  (6) 

 
Así, de las ecuaciones mostradas en (6) se puede obtener, 
la ecuación (7) que permite determinar la distancia r = OS: 
 

.R Lr
R


 

 (7) 

 
 Calculando el valor de r: 
 

( ' ' ).( )x y z x yx a y a za xa ya
r

R
  


    

 

' '

' '

xx yyr
R

x yr x y
R R




 
 

 

 

Seguidamente, se definen los cosenos directores del vector 
ሬܴ⃗ = ܱܲ´, tal como se muestra en (8): 
 

' 'x yu v
R R

   (8) 
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r ux vy   

 

 

 
Figura 3. Diagrama de rayos para la determinación de la difracción por una ranura simple bajo los criterios de Fraunhofer. 

 
Una onda plana ߰(ݎ,  tiene la forma fundamental (ݐ
mostrada en la ecuación (9): 
 

( , ) cos( )r t kr t      (9) 
 
Mediante la fórmula de Euler se puede obtener la expresión  
exponencial de la función de onda como se aprecia en (10): 
 

( )

( )

( , )
( , )

( )
( , )

kr t j

kr j tj

j tj

r t e
r t e e

kr
r t e e

 

 

 




 



 

 






 



 (10) 

 
La diferencia de fase ߜ entre los dos rayos ሬܴ⃗  y ܮሬ⃗  está dada 
por las ecuaciones (11): 
 

2
r

 


  

2 ( )ux vy


   
(11) 

Partiendo de la definición del número de onda angular ݇, se 
puede escribir el desfase  ߜ  como se ilustra en (12): 
 

2

( )

k

k ux vy
kux kvy









 
 

 
(12) 

 
Adicionalmente, si se plantea un número ݇ de onda para 
cada coordenada mediante su coseno director ݑ y ݒ, 
entonces se puede afirmar que: 

x yk ku k kv   

x yk x k y    

 

 
Así, la función de la onda ߰(ݎ)  respeto a la posición está 
dada por la ecuación (13): 
 

( )( ) x yk x k y jr e   (13) 

 
Y la ecuación de onda ߰(ݐ)  respecto al tiempo se expresa 
como se aprecia en la ecuación (14): 
 

( ) tjt e    (14) 

 
La función de onda plana resultante es el producto: 
 

( , ) ( ) ( )r t r t    



    Scientia et Technica Año XVIII, Vol. 18, No 1, Abril  de 2013. Universidad Tecnológica de Pereira. 
 

297 

 
La contribución de la amplitud en el punto P’ se escribe 
como se muestra en la ecuación (15), donde por 
simplicidad se ha obviado  la componente del tiempo  
(ݐ)߰ = ݁ିఠ௧௝. 
 

( )

'( ', ') ( )

'( ', ') x yk x k y j

dA x y r dA

dA x y e dA







 (15) 

 
Para obtener la amplitud ܣ de la onda se deben tener en 
cuenta las contribuciones de todos los puntos, por lo que si 
la amplitud y la fase de la onda incidente son constantes 
sobre toda la ranura, se puede integrar directamente sobre 
la ecuación (15), dando como resultado la integral 
mostrada en (16): 

0 0

0 0

( )'( ', ') x y

x y
k x k y j

x y

A x y e dxdy

 

    (16) 

 
El aporte mostrado en la ecuación (16) corresponde a una 
ranura con límites definidos y que la amplitud de la onda 
incidente es constante. Esta variación se puede introducir 
deliberadamente colocando una máscara (ݕ,ݔ)ܨ sobre la 
ranura permitiendo una modulación en amplitud y fase. De 
esta forma se obtiene la ecuación (17) que corresponde a la 
definición de  Transformada de Fourier  en dos 
dimensiones en términos de las frecuencias espaciales ݇௫ y 
݇௬. 

( )'( ', ') ( , ) x yk x k y jA x y F x y e dxdy
 



 

    (17) 

 
 Para el caso de una ranura rectangular, como la mostrada 
en la Figura (3), de ancho	2݋ݔ y alto 2݋ݕ, se puede decir 
que los  límites de la integral son los mostrados sobre la 
integral de la ecuación (16). 
 
Siendo la integral doble separable, entonces se puede 
resolver como se ilustra en (19), separando las variables: 
 

0 0

0 0

0 0

0 0

'( ', ')

'( ', ')

yx

yx

x y
k yjk xj

x y

x y
k yjk xj

x y

A x y e e dxdy

A x y e dx e dy

 

 





 

 
 (18) 

 
Resolviendo inicialmente la integral para la coordenada ݔ, 
se puede decir: 
 

0

0

0

0

'( ')

1'( ')

1 2'( ')
2

x

x o x

x o x

x
k xj

x
x

k x j k x j
x

x

k x j k x j
x

x

A x e dx

A x e e
k j

A x e e
k j





   

    



 

02'( ')
2

x o xk x j k x j

x
x

e eA x
k j
 

  
 

 

0

2
2'( ')

2'( ')

x o xk x j k x j

x o

x x o
x

o
x x o

x o

e esenk x
j

A x senk x
k

xA x senk x
k x

 
  
 



 
  
 

 

 

 
Siendo, finalmente, la contribución en el eje ݔ igual al 
resultado mostrado en la ecuación (19): 
 

'( ') 2 x o
x o

x o

senk xA x x
k x

  (19) 

 
Procediendo de manera análoga para ܻ, se puede indicar 
que la contribución es el valor entregado en la ecuación 
(20) es: 

'( ') 2 y o
y o

y o

senk x
A y y

k x
  (20) 

 
Se debe recordar que la amplitud ܣ′ es proporcional al 
producto de las contribuciones en ݔ y ݕ: 
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  
   

    
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   
    



 
  

 

  
   

    

 
  

 

2

 

 

 

La  intensidad ܫ de la onda incidente ߰(ݎ) sobre el plano 
de observación, es directamente proporcional al cuadrado 
de la amplitud ܣ´.  
 

2'( ', ')I A x y  (21) 

 
Luego, al evaluar el criterio definido en la ecuación (21), se 
obtienen las expresiones ilustradas en (22): 

22

16 y ox o
o o

x o y o

senk xsenk xI x y
k x k x

  
   

    
 (22) 

 
Se puede indicar que la intensidad ܫ	producida por una  
onda plana ߰(ݎ,  cuando cruza una ranura rectangular de  (ݐ
ancho	2݋ݔ y alto 2݋ݕ,  bajo los criterios de la difracción de 
Fraunhoffer, está dada en la ecuación (23): 
 

22

0
y ox o

x o y o

senk xsenk xI I
k x k x

  
   

    
 (23) 

 
 Si se hace que para la ranura rectangular ݔ଴ ≫  ,଴ݕ
entonces el patrón de difracción queda confinado al eje ݔ’ y 
la ecuación (23) se reduce a la expresión (24): 
 

2

0
x o

x o

senk xI I
k x

 
  

 
 (24) 

 
Si se opera haciendo las equivalencias respectivas: 
 

2 '
x

xk ku kx u u
R



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2

0

2 '

2 '
o

o

xsen x
RI I x x

R






 
 

  
 
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Se tiene que: 
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De este modo, se obtiene la ecuación (25), la cual 
corresponde a la expresión  clásica para la determinación 
de la intensidad		ܫ producida por una fuente coherente de 
longitud de onda ߣ de un patrón de difracción que 
interactúa con una ranura angosta de ancho 	݀, bajo los 
criterios de la difracción de Fraunhoffer.  
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Donde: 
 .଴ es la intensidad de la fuenteܫ
d es el ancho de la ranura. 
 .es la longitud de onda de la fuente ߣ

D. Cálculo de la FT de la función Gate[5] 
 
La función Gate se ajusta en su forma a una ranura similar 
a la encontrada en el caso de la difracción tratada en este 
artículo, la cual está definida bajo los criterios presentados 
en la ecuación (26). 

0
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
   

 

 (26) 

Esta función tiene el aspecto que se muestra en la Figura 4. 
 

 
Figura 4. Aspecto general de la función Gate. 
 
Partiendo de la definición de la Transformada de Fourier 
en una dimensión, y cumplido el criterio de convergencia 
tal como se ilustra en (27), se procede al cálculo: 
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Así, la evaluación de la integral entre los límites del ancho 
del Gate (Ranura) se desarrolla de la siguiente forma: 
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Si se usa la equivalencia exponencial de la función seno, 
mostrada en (28), se obtiene la ecuación (29). 
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La expresión (29) resulta ser la Transformada de Fourier de 
una función Gate de altura ܣ y ancho ݀. 
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El comportamiento de la respuesta en frecuencia de la 
función Gate se puede ver en la Figura 5. En esta, la 
respuesta en frecuencia del espectro de amplitud, puede 
tomar valores negativos, por  lo es también común hablar 
del espectro de energía siendo este el cuadrado del espectro 
de amplitud. 

 
Figura 5. Espectro de frecuencia de la función Gate. 
 
 

III. METODOLOGÍA  
 

Habiendo conceptualizado el marco teórico  del trabajo a 
desarrollar, se procede a continuación a describir el 
proceso experimental realizado: 
 
Inicialmente se instala un laser de luz roja (que emite una 
longitud de onda λ= 650nm) ubicándolo a una distancia de 
1m de una ranura simple de 0,08mm. 
 

 
Figura 6. Fotografía del montaje para el experimento de 
Difracción de Fraunhoffer, mediante el kit de Pasco. 
Luego se apunta el laser a la ranura proyectando sobre una 
pantalla el patrón de luces y sombras resultante, tal como 
se muestra en la Figura 7.  
 

 
Figura 7. Fotografía correspondiente a un patrón de Difracción de 
Fraunhoffer para una ranura simple. 
 
La fotografía de la Figura 7 se captura mediante una 
cámara Nikon D60 configurándole para realizar capturas 
en formato RAW (NEF de Nikon) con una exposición de 
1/3, sin flash a una resolución de  3900x2613 pixels.  
 
Posteriormente, la imagen es convertida a formato TIFF 
mediante el programa dcrawms.exe, el cual se puede 
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descargar y consultar en [9], para ser tratada seguidamente 
desde Matlab®. 
 
Al apreciar y evaluar cualitativamente la Figura 7, se puede 
notar que esta requiere ajustes de brillo, rotación y ajuste 
del color.  
 
La Figura 8 ilustra los cambios  respectivos  realizados 
sobre la Figura 7 para lograr su mejora con la ayuda de 
Matlab®  y su toolbox de tratamiento digital de imágenes. 
 

 
 

 
 

 
Figura 8. Ajustes necesarios  para la mejora de la imagen TIFF 
capturada mediante la cámara Nikon D60 en formato NEF de 
Nikon. 
 
Los datos de posición ݔ e intensidad ܫ  del cada pixel se 
llevan a Matlab® y se hace que el valor de la intensidad I 
sea en por Unidad, para luego graficar obteniéndose la 
Figura 9. 
 

Figura 9. Curva de intensidad experimental de la fotografía con 
ruido. 
 

La información captada por el fotosensor CCD de la 
cámara  posee  ruido, por lo que se procede a hacer un 
“suavizado” a través de un algoritmo de tres puntos en 
Matlab y luego se grafica como se observa en la Figura 10. 

 
Figura 10. Curva de intesidad experimental fotografiada 
suavizada. 
 
De acuerdo a la literatura estudiada, el resultado en la  
Figura 10, representa la transformada de Fourier elevada al 
cuadrado siendo esta la forma del espectro de energía.  
 
Por tanto al aplicar la transformada inversa al espectro de 
amplitud suavizado de la gráfica obtenida, se espera 
encontrar la función en el espacio ݂(ݔ) de la ranura (que 
para este caso sería una función Gate que posee el mismo 
ancho ݀ que el de la ranura). 
 
 

IV. RESULTADOS 
 
La función Gate ideal mostrada en la Figura 11, 
corresponde a una ventana de altura A = 1 (por unidad) y 
ancho d = 0,08mm, lo cual es similar a las condiciones en 
que fue realizado el experimento. 

Figura 11. Ranura ideal bajo las mismas condiciones esperadas 
del experimento. 
 
Cuando se calcula el espectro de amplitud de la Función 
Gate ideal mostrada en la Figura 11, se obtiene el espectro 
de amplitud mostrado en la Figura 12.  
 
Nótese, que para todos los casos, la amplitud ha sido 
llevada a un valor por Unidad.  
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Figura 12. Transformada de Fourier de la Función Gate ideal. 
 
Cuando se superponen los espectros de amplitud de la 
función experimental fotografiada y  suavizada mostrada 
en la Figura 10 con la Función ideal de la Figura 1, se 
obtiene la Figura 13 en la cual se pueden considerar 
algunas similitudes desde el punto de vista cualitativo. 
 

 
Figura 13. Superposición de los espectros de amplitud de la 
función experimental suavizada y la función Gate ideal. 
 
Para efectos de la experimentación cuantitativa, se realiza  
el cálculo del error relativo considerando los datos 
discretos con los que se construyó la función mostrada en 
la Figura 12 como el valor verdadero y los de la Figura 10 
como los experimentales.  
 
En la Figura 14 puede apreciarse el cálculo porcentual del 
error relativo (realizado en forma discreta) que se obtiene 
de comparar los espectros de amplitud ideal y experimental 
fotografiado. 
 

 
Figura 14. Cálculo discreto porcentual del error relativo entre los 
espectros de amplitud ideal y experimental fotografiado. 
 

 
V. CONCLUSIONES 

 
El error relativo calculado es alto en algunos puntos de 
comparación (como era de esperarse bajo las condiciones 
no optimas de la fotografía tomada en el  laboratorio), pero 
en general se observa que se mantiene un error por debajo 
del 5% para la mayoría de los puntos usados, lo cual 
ratifica, para el caso de este experimento,  la relación clara 
entre el patrón de Difracción por una ranura bajo los 
criterios de Fraunhofer mediante el uso de instrumentos 
fotográficos. 
 
El experimento considerado mediante la fotografía, y su 
posterior análisis mediante el tratamiento digital de 
imágenes, representa una variante  para el estudio de los 
problemas propios de la luz con equipos que se pueden 
considerar alternativos. 
 
 De manera general, el experimento ilustra la posibilidad de 
realizar la Transformada de Fourier y el filtrado se 
imágenes mediante implementaciones físicas de ranuras, 
lentes y máscaras sin recurrir a las computadoras que 
ejecutan algoritmos (sujetos a su rapidez de 
procesamiento), ya que en cualquier caso el montaje  físico 
se realiza a la velocidad de la luz siendo este un límite 
insuperable para cualquier computador comercial 
empleado hasta la fecha. 
 
Los autores consideran que es posible mejorar el análisis 
del experimento mejorando las condiciones de la fotografía 
en el momento de su captura y  conociendo los criterios de 
incertidumbre de la cámara utilizada. 
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