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Resumen— La transformada de Fourier posee una alta
correlacion con el andlisis fisico de la Optica. Este trabajo
busca presentar la relacion que existe entre la difraccion de la
luz a través de una ranura larga bajo los criterios de
Fraunhofer y las posibilidades del analisis mediante
complementario mediante el tratamiento de imagenes.

Palabras clave— analisis, difraccion, fourier, fraunhofer,
imagen, luz, dptica, procesamiento, ranura.

Abstract— The Fourier transform provides a physical link
with optical theory. This work presents a simple relationship
but valuable academically, between the diffraction of light
through a long slit under the Fraunhofer criteria and
possibilities of its complementary analysis using imaging
processing.

Key Word — analysis, diffraction, fourier, fraunhofer, image,
light, optics, processing, slot

I INTRODUCCION

El anlisis de Fourier trata sobre el estudio matemético de
la forma en la que funciones generales se pueden
representar o aproximar mediante sumas simples de
funciones trigonomeétricas de tipo seno y coseno.

A través de la experimentacion se ha encontrado que desde
el punto de vista fisico el fendmeno de difraccion permite
descomponer una onda de la misma forma en que lo hace
Fourier a través de su transformada.

En este sentido, el presente articulo busca evidenciar el
alcance del tratamiento digital de imagenes para el anélisis
de datos obtenidos a partir de una muestra experimental
fotografiada de la difraccion de Fraunhofer por una ranura
simple.

En este documento se recurre inicialmente a definir
algunos conceptos fisicos y matematicos relevantes para el

Fecha de Recepcion: 25 de Enero de 2013
Fecha de Aceptacidn: 30 de Abril de 2013

lector y posteriormente se presenta el analisis de datos y su
posterior comparacion con modelos fisicos y matematicos
estudiados en la literatura consultada.

. CONTENIDO

A. Difraccion

La Difraccion consiste en la dispersion y curvado de las
ondas cuando estas encuentran un obstaculo o una abertura;
si una abertura (u obstaculo) es grande en comparacion con
la longitud de onda de la onda, el efecto de la difraccién es
pequefio, y la onda se propaga en linea recta, como si se
tratara de un haz de particulas; sin embargo, cuando el
tamafio de la abertura (u obstaculo) es comparable a la
longitud de onda, la difraccion es importante y la onda se
dispersa como si procediese de una fuente puntual
localizada en la abertura.

La difraccion es un fendmeno asociado a todo tipo de
ondas, desde ondas sonoras, ondas en la superficie de un
fluido, hasta ondas electromagnéticas como la luz y las
ondas de radio.

El fendmeno de la difraccion es de tipo interferencial y
como tal implica la superposicién de ondas coherentes
entre si.

Se puede afirmar que la difraccién se produce cuando la
longitud de onda es mayor que las dimensiones del objeto
con que interactda dicha onda, por tanto, los efectos de la
difraccion disminuyen hasta hacerse indetectables a medida
que el tamafio del objeto aumenta comparado con la
longitud de onda, tal como se indica en [1].

1. Difraccién de Fraunhoffer[1][2]

De acuerdo con el Principio de Huygens cuando una onda
incide sobre una ranura, todos los puntos de su plano se
convierten en fuentes secundarias de ondas, emitiendo
nuevas ondas, llamadas ondas difractadas, por lo que la
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explicacion del fenémeno de la difraccion no es
cualitativamente distinto del de interferencia.

El caso mas sencillo de difraccion corresponde a la
difraccion de Fraunhofer para una ranura simple, situacién
en la que el obstaculo es una ranura estrecha y larga de
modo que es posible ignorar el efecto de los extremos, tal
como se muestra en la Figura 1 (la cual no se encuentra a
escala, ya que la apertura a de la ranura es del orden de los
milimetros, mientras que la distancia D a la pared esta en
metros).
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Figura 1. Diagrama para la determinacién de la difraccion para
una ranura. Esta figura no se encuentra a escala real, por lo que
posee una zona comprimida [1].

B. Transformada de Fourier (FT)[7][8]

La Transformada de Fourier es un método de
procesamiento que permite descomponer y extraer una
sefial en sus diferentes componentes de amplitud,
frecuencia y fase para su posterior analisis y tratamiento.

La funcion se puede definir usualmente en el tiempo como
f(t), o en la posicion f(x) (como se tratara para el caso
presente), y posteriormente se transforma al dominio de la
frecuencia como F(u); a esta Ultima funcién es la que se
denomina Transformada de Fourier [1].

Las ecuaciones mostradas en (1) presentan la definicion de
la Transformada de Fourier F(u) y su inversa f(x).

Fu)= Tf(x)e_z’wxjdx
- | ®
f(x)= IF(y)éZ”“Xde

—00

Estas ecuaciones se pueden extender a dos dimensiones
como se ilustra en las ecuaciones mostradas en (2) donde p
y v son variables de frecuencia.

F(uv)= [ J £y 270 oy

w . (2)
fy)= ] (02 gy

1. Transformada Discreta de Fourier (DFT)

En las aplicaciones de ingenieria, como el tratamiento de
sefiales, se considera el proceso de manera discreta y no
continua, puesto que los sistemas de adquisicion de datos
operan de manera digital, ya que sélo se poseen datos
discretos resultantes de una captura.

La DFT se desarroll6 con el fin de trabajar con ella en
sistemas reales discretos a fin de optimizar el desempefio a
la hora de calcular la transformada [2].

Las  ecuaciones (3) presentan la definicién de la
transformada discreta de Fourier F(u) y su inversa f(x) en
una dimension.

N-1

1 —2muxj/ N
)==Y £(
N Z X)e

'y |
f(x)= 3 F(u)e?™ 9™ ®

u=0

Z

Conp=0,1,2, ...,N1

Las ecuaciones mostradas en (3), con F(u) y su inversa
f(x), se pueden extender para el caso de la transformada
discreta de Fourier en dos dimensiones.

La FT en 2D F(u,v) ysu inversa f (x,y) se muestran en la
ecuacion (4).

1 Nwm-l -2 ‘u—x+ﬂj
F(H’V):W f(x,y)e [N M]
x=0 y=0
N-1M-1 27 /Lx+ﬂ ]
Fxy)=2 > Fluv ) @
x=0 y=0

Con:p=0,1,2 ..., N-1
v=0,1,2 ..., M-1

2. Transformada Rapida de Fourier (FFT)
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Como el nimero de operaciones efectuadas por la DFT
puede resultar altamente demandante en tiempo y recursos
del sistema, se hace necesaria la implementacion de un
algoritmo recursivo que disminuya de manera exponencial
el ndmero de operaciones efectuadas por la DFT; esto
motiva la aparicién de nuevos métodos de analisis como la
FFT.

La FFT es el algoritmo que se utiliza para realizar la DFT
de una forma eficiente y rapida; lo que se consigue con este
algoritmo es simplificar enormemente el calculo de la DFT
introduciendo  “atajos” matematicos para  reducir
drasticamente el nimero de operaciones.

3. Transformada Optica de Fourier

La Transformada o&ptica de Fourier es un término
comunmente usado por muchos autores para identificar el
uso de la transformada de Fourier a fin de describir y
analizar las situaciones propias de la 6ptica ondulatoria [2].

C. Calculo del patron de difraccion para una ranura
simple[2][3][4][6]

Para obtener una expresion para el patron de difraccion
formado para una ranura, se hace uso del principio
Huygens — Fresnel, el cual indica que cada punto sobre la
ranura es una fuente de pequefias ondas esféricas con
amplitudes y fases determinadas por la onda incidente.

Estas pequefias ondas secundarias se propagan en todos
los angulos e interfieren en cada punto en el plano de
observacién para determinar la amplitud de la onda
difractada; para ello se toma el frente de onda incidente
paralelo al plano de la ranura, mientras que el plano de
observacién se localiza en el infinito (Difraccion de
Fraunhoffer).

Una aproximacién de la anterior descripcion puede
observarse en el dibujo de la Figura 3, donde se muestran
los planos de la ranura y de observacion.

Desde la ranura parten dos rayos, el primero de ellos sigue
la trayectoria OO’ y el segundo la trayectoria PP’.

El punto P sobre el plano de la ranura se especifica
mediante las coordenadas (x,y); mientras que P’,
localizada sobre el plano de observacion se presenta a
través de (x', y").

Como se considera que el plano de observacion se
encuentra en el infinito, entonces la distancia OP’ es muy
grande, paralela e igual a 00’, luego la diferencia de

camino entre los rayos OP’ y PP’ es la distancia 0S, donde,
se considera que PS es perpendicular a OP’.

Ple,n)
L PEw
JIRCY
o "°

Figura 2. Diagrama ampliado de la proyeccion del vector L sobre
el vector R.

La magnitud r se puede calcular a partir del producto punto

al determinar la proyeccién del vector L sobre el vector R
donde los vectores se definen en la ecuacion (5) (véase la
Figura 2):

)

Para el célculo de producto punto se procede mediante las
relaciones mostradas en (6):

F?.I::‘F?HE‘cosqb
. (6)
r:‘L‘COS¢

Asi, de las ecuaciones mostradas en (6) se puede obtener,
la ecuacion (7) que permite determinar la distanciar = OS:

R.L

- 7
r . (7

Calculando el valor der:

B (x'a, +y'a, +z4a,).(xd, +ya,)

r
R
P XY
R
Xl yl
r=—X+=>
R R y

Seguidamente, se definen los cosenos directores del vector
R = 0P, tal como se muestra en (8):

u==  v==> )
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Figura 3. Diagrama de rayos para la determinacion de la difraccion por una ranura simple bajo los criterios de Fraunhofer.

Una onda plana y(r,t) tiene la forma fundamental
mostrada en la ecuacion (9):

v (r,t) = cos(kr — wt + @) 9)

Mediante la formula de Euler se puede obtener la expresion
exponencial de la funcion de onda como se aprecia en (10):

l//(l’, t) — e(krfwtﬂp)j
W(r’ '[) = plkr+e)ig=oli
0 =(kr +¢)
y(r,t)=e’le™

(10)

La diferencia de fase & entre los dos rayos R y L esta dada
por las ecuaciones (11):

2n 5

A r 1)

2r
0 =—(ux+
o (X wy)

Partiendo de la definicion del nimero de onda angular k, se
puede escribir el desfase § como se ilustra en (12):

k=27

A 12
0 =k(ux+vy) (12)
0 = kux + kvy

Adicionalmente, si se plantea un nimero k de onda para
cada coordenada mediante su coseno director u y v,
entonces se puede afirmar que:

k =ku Kk, =kv

y

o=k Xx+k,y

Asi, la funcion de la onda () respeto a la posicion esta
dada por la ecuacion (13):

(kyxrkyY) )

w(r)=e

Y la ecuacion de onda ¥ (t) respecto al tiempo se expresa
como se aprecia en la ecuacion (14):

w(t)=e (14)

La funcién de onda plana resultante es el producto:

w(rt)=y(rw(t)
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La contribucion de la amplitud en el punto P’ se escribe
como se muestra en la ecuacion (15), donde por
simplicidad se ha obviado la componente del tiempo

Y(t) = e Y,
dA'(x",y") =w(r)dA

. (15)
dAl(X l’ y l) — e(kxXJrkyy) J dA

Para obtener la amplitud A de la onda se deben tener en
cuenta las contribuciones de todos los puntos, por lo que si
la amplitud y la fase de la onda incidente son constantes
sobre toda la ranura, se puede integrar directamente sobre
la ecuacion (15), dando como resultado la integral
mostrada en (16):

X Yo )
A'(x',y'):j Ie(kxx+kyy)1dxdy (16)

—% —Yo

El aporte mostrado en la ecuacién (16) corresponde a una
ranura con limites definidos y que la amplitud de la onda
incidente es constante. Esta variacion se puede introducir
deliberadamente colocando una méascara F(x,y) sobre la
ranura permitiendo una modulacién en amplitud y fase. De
esta forma se obtiene la ecuacion (17) que corresponde a la
definicion de  Transformada de Fourier en dos
dimensiones en términos de las frecuencias espaciales k,, y
k

A'(X'y") = _[ _[ F(x, y)e* ™ Mdxdy @7

Para el caso de una ranura rectangular, como la mostrada
en la Figura (3), de ancho 2xo y alto 2yo, se puede decir
que los limites de la integral son los mostrados sobre la
integral de la ecuacion (16).

Siendo la integral doble separable, entonces se puede
resolver como se ilustra en (19), separando las variables:

X0 Yo .
A'(x',y')=j jekijeknydxdy

;XO —Yo y (18)
A(X'y") = j ekijdxj e“dy

—Xo —Yo

Resolviendo inicialmente la integral para la coordenada x,
se puede decir:

A '(x)= T e“dx
—Xo

AK.(X.):kij[ekxij_ekxij]

X

A\'(x')=kij[ek**” ~e ]

X

2 ekxxoj _ekxxoj
A'X)=—|—F7
K, 2]
kxxoj_ kxxoj
senk, X, {i}
2]
von 2
A (x)=k—5enkxx0
2 X
'(x) =|—senk x_[x—=
| Zan

Siendo, finalmente, la contribucion en el eje x igual al
resultado mostrado en la ecuacion (19):

v senk, x,
A '(x)=2x, o (19)

X°0

Procediendo de manera anéloga para Y, se puede indicar
que la contribucion es el valor entregado en la ecuacién
(20) es:
(y) =2 senk, X,
y)=2y,—/—— 20

y o

Se debe recordar que la amplitud A’ es proporcional al
producto de las contribuciones en x y y:
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senk. x
A'(x',y'):{Zxo—senkxx‘J} 2y, ="

k. X k. x

xo y ™o

senk X
- b

K, X, K, X,

I oc AY(X,y")

| senk x,
kXXO

r T2
senk x, | | senk X,

Lok ] kX

senk, X,
kXXO

La intensidad I de la onda incidente y(r) sobre el plano
de observacién, es directamente proporcional al cuadrado
de la amplitud 4"

| oc A'(X',y")? (21)

Luego, al evaluar el criterio definido en la ecuacion (21), se
obtienen las expresiones ilustradas en (22):

2
senk, X
|=16x0y{se£kxx°} .
X + %o

X°'0

(22)

Se puede indicar que la intensidad I producida por una
onda plana iy (r,t) cuando cruza una ranura rectangular de
ancho 2xo y alto 2yo. bajo los criterios de la difraccion de
Fraunhoffer, estd dada en la ecuacion (23):

2 2

senk, x

-1, senk, x, yXo 23)
K, X, K, X,

Si se hace que para la ranura rectangular x, > y,,
entonces el patron de difraccion queda confinado al eje x' y
la ecuacion (23) se reduce a la expresion (24):

2

senk, x

I =1, {—XO} (24)
KX,

Si se opera haciendo las equivalencias respectivas:

K —ku  k=2Ey =X
A R

27 X'
sen— —X,
I=1 A R

o 27z x'
77X0

A R
Se tiene que:

send :i
R
d =2x,

De este modo, se obtiene la ecuacién (25), la cual
corresponde a la expresion clasica para la determinacion
de la intensidad I producida por una fuente coherente de
longitud de onda A de un patrén de difraccion que
interacta con una ranura angosta de ancho d bajo los
criterios de la difraccion de Fraunhoffer.

sen(zzgfsene) 2
A

Zzgsen@
A

I =1, (25)

Donde:
I, es la intensidad de la fuente.
d es el ancho de la ranura.
A es la longitud de onda de la fuente.
D. Célculo de la FT de la funcion Gate[5]

La funcion Gate se ajusta en su forma a una ranura similar
a la encontrada en el caso de la difraccion tratada en este
articulo, la cual esta definida bajo los criterios presentados
en la ecuacion (26).

0 x<—9
2

f(x)=<A ——<x<% (26)

Esta funcion tiene el aspecto que se muestra en la Figura 4.
f(t)

A

(SN
(N8

Figura 4. Aspecto general de la funcion Gate.

Partiendo de la definicion de la Transformada de Fourier
en una dimension, y cumplido el criterio de convergencia
tal como se ilustra en (27), se procede al calculo:
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F ()= [ £ (x)e 2™ x
; ” @7)
J' f(x)dx <oo

Asi, la evaluacion de la integral entre los limites del ancho

del Gate (Ranura) se desarrolla de la siguiente forma:
d

2 .
F(u)= jd Ae2M g

2

d
A =2muxj |5
F ()= 2™ 2
-2 _d
T ) 5
A | 2zl 2mulj
F(y)=—2 -le 2 -e 2
T )
B d: d
A eZHﬂEJ _e_Z”.UEJ
P
A B eﬂudj B e—ﬂudj
R T

Si se usa la equivalencia exponencial de la funcion seno,
mostrada en (28), se obtiene la ecuacion (29).

enudj ~ e—ﬂydj
sen(zud) = — 28)

La expresion (29) resulta ser la Transformada de Fourier de
una funcién Gate de altura A y ancho d.

F ()= Ad SEN01d) 29)
zud

El comportamiento de la respuesta en frecuencia de la
funcion Gate se puede ver en la Figura 5. En esta, la
respuesta en frecuencia del espectro de amplitud, puede
tomar valores negativos, por lo es también comdn hablar
del espectro de energia siendo este el cuadrado del espectro
de amplitud.

f(u)

]
\
\
\

Figura 5. Espectro de frecuencia de la funcion Gate.

1I. METODOLOGIA

Habiendo conceptualizado el marco tedrico del trabajo a
desarrollar, se procede a continuacion a describir el
proceso experimental realizado:

Inicialmente se instala un laser de luz roja (que emite una
longitud de onda A= 650nm) ubicandolo a una distancia de
1m de una ranura simple de 0,08mm.

Figura 6. Fotografia del montaje para el experimento de
Difraccion de Fraunhoffer, mediante el kit de Pasco.

Luego se apunta el laser a la ranura proyectando sobre una
pantalla el patron de luces y sombras resultante, tal como
se muestra en la Figura 7.

Figura 7. Fotografia correspondiente a un patrén de Difraccion de
Fraunhoffer para una ranura simple.

La fotografia de la Figura 7 se captura mediante una
camara Nikon D60 configurdndole para realizar capturas
en formato RAW (NEF de Nikon) con una exposicion de
1/3, sin flash a una resolucién de 3900x2613 pixels.

Posteriormente, la imagen es convertida a formato TIFF
mediante el programa dcrawms.exe, el cual se puede
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descargar y consultar en [9], para ser tratada seguidamente
desde Matlab®.

Al apreciar y evaluar cualitativamente la Figura 7, se puede
notar que esta requiere ajustes de brillo, rotacion y ajuste
del color.

La Figura 8 ilustra los cambios respectivos realizados
sobre la Figura 7 para lograr su mejora con la ayuda de
Matlab® vy su toolbox de tratamiento digital de iméagenes.

Figura 8. Ajustes necesarios para la mejora de la imagen TIFF
capturada mediante la cdmara Nikon D60 en formato NEF de
Nikon.

Los datos de posicidn x e intensidad I del cada pixel se
llevan a Matlab® y se hace que el valor de la intensidad |
sea en por Unidad, para luego graficar obteniéndose la
Figura 9.

Cuna de Intensidad Experimental por Fotografia
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Figura 9. Curva de intensidad experimental de la fotografia con
ruido.

La informacién captada por el fotosensor CCD de la
camara posee ruido, por lo que se procede a hacer un
“suavizado” a través de un algoritmo de tres puntos en
Matlab y luego se grafica como se observa en la Figura 10.

Cuna de Intensidad Experimental por Fotografia

1 7\
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§ 06
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Posicion en mm

Figura 10. Curva de intesidad experimental fotografiada
suavizada.

De acuerdo a la literatura estudiada, el resultado en la
Figura 10, representa la transformada de Fourier elevada al
cuadrado siendo esta la forma del espectro de energia.

Por tanto al aplicar la transformada inversa al espectro de
amplitud suavizado de la grafica obtenida, se espera
encontrar la funcidén en el espacio f(x) de la ranura (que
para este caso seria una funcién Gate que posee el mismo
ancho d que el de la ranura).

(AVA RESULTADOS

La funcién Gate ideal mostrada en la Figura 11,
corresponde a una ventana de altura A = 1 (por unidad) y
ancho d = 0,08mm, lo cual es similar a las condiciones en
que fue realizado el experimento.

Ranura Ideal
1

°
®

°

°
=

Altura en por Unidad

°
~

0 0.05 0.1 015 02 025 03 035 0.4 0.45
Posicion en mm

Figura 11. Ranura ideal bajo las mismas condiciones esperadas
del experimento.

Cuando se calcula el espectro de amplitud de la Funcién
Gate ideal mostrada en la Figura 11, se obtiene el espectro
de amplitud mostrado en la Figura 12.

Notese, que para todos los casos, la amplitud ha sido
llevada a un valor por Unidad.



Scientia et Technica Afio XVIII, Vol. 18, No 1, Abril de 2013. Universidad Tecnoldgica de Pereira. 301

FFT de la Ranura Ideal

—
—

Intensidad en por Unidad

S 2
~——
—

0 5 10 15 20 25 30 35 40 a5
osicion en mm

Figura 12. Transformada de Fourier de la Funcién Gate ideal.

Cuando se superponen los espectros de amplitud de la
funcién experimental fotografiada y suavizada mostrada
en la Figura 10 con la Funcién ideal de la Figura 1, se
obtiene la Figura 13 en la cual se pueden considerar
algunas similitudes desde el punto de vista cualitativo.
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Figura 13. Superposicion de los espectros de amplitud de la
funcion experimental suavizada y la funcién Gate ideal.

Para efectos de la experimentacion cuantitativa, se realiza
el calculo del error relativo considerando los datos
discretos con los que se construyd la funcion mostrada en
la Figura 12 como el valor verdadero y los de la Figura 10
como los experimentales.

En la Figura 14 puede apreciarse el calculo porcentual del
error relativo (realizado en forma discreta) que se obtiene
de comparar los espectros de amplitud ideal y experimental
fotografiado.

Error Relativo
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Figura 14. Calculo discreto porcentual del error relativo entre los
espectros de amplitud ideal y experimental fotografiado.

V. CONCLUSIONES

El error relativo calculado es alto en algunos puntos de
comparacion (como era de esperarse bajo las condiciones
no optimas de la fotografia tomada en el laboratorio), pero
en general se observa que se mantiene un error por debajo
del 5% para la mayoria de los puntos usados, lo cual
ratifica, para el caso de este experimento, la relacion clara
entre el patron de Difraccion por una ranura bajo los
criterios de Fraunhofer mediante el uso de instrumentos
fotograficos.

El experimento considerado mediante la fotografia, y su
posterior analisis mediante el tratamiento digital de
imagenes, representa una variante para el estudio de los
problemas propios de la luz con equipos que se pueden
considerar alternativos.

De manera general, el experimento ilustra la posibilidad de
realizar la Transformada de Fourier y el filtrado se
imagenes mediante implementaciones fisicas de ranuras,
lentes y maéscaras sin recurrir a las computadoras que
ejecutan algoritmos  (sujetos a su rapidez de
procesamiento), ya que en cualquier caso el montaje fisico
se realiza a la velocidad de la luz siendo este un limite
insuperable para cualquier computador comercial
empleado hasta la fecha.

Los autores consideran que es posible mejorar el andlisis
del experimento mejorando las condiciones de la fotografia
en el momento de su captura y conociendo los criterios de
incertidumbre de la cdmara utilizada.
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