

Scientia Et Technica
ISSN: 0122-1701
scientia@utp.edu.co

Universidad Tecnológica de Pereira Colombia

Arias González, Andrés Mauricio; Gil Cañas, Diana Margarita; Arrubla Vélez, Juan Pablo
Análisis de fitoesteroles en la semilla del estropajo, luffa cylindrica por cromatografía de gases capilar
Scientia Et Technica, vol. 18, núm. 3, octubre-, 2013, pp. 535-541
Universidad Tecnológica de Pereira
Pereira, Colombia

Disponible en: http://www.redalyc.org/articulo.oa?id=84929154014

Número completo

Más información del artículo

Página de la revista en redalyc.org

Análisis de fitoesteroles en la semilla del estropajo, luffa cylindrica por cromatografía de gases capilar

Analysis of phytosterols in scourer seeds, *luffa cylindrica* by capillary gas chromatography

Andrés Mauricio Arias González¹, Diana Margarita Gil Cañas², Juan Pablo Arrubla Vélez³*.

*Profesor Asistente, Escuela de Tecnología Química, Universidad Tecnológica de Pereira, Pereira, Colombia.

juanpablo77@utp.edu.co

Resumen— Se extrajo aceite de las semillas de luffa cylindrica, con rendimiento del 8,45%. El aceite fue saponificado, se extrajo su materia insaponificable, derivatizandola por silación. Se evaluó el porcentaje de recuperación de 82,96% por extracción en fase sólida. Se estandarizó la técnica de cromatografía de gases para el análisis de fitoesteroles en matrices oleosas, evaluando los parámetros estadísticos: precisión, límite de detección y cuantificación, sensibilidad, linealidad y exactitud, logrando valores tolerables. El aceite mostró al β-sitoesterol y estigmasterol como fitoesteroles mayoritarios en la semilla con 2551,1 y 211,1 ppms confirmación respectivamente, la se realizó espectrometría de masas.

Palabras claves— Cromatografía de gases, extracción en fase sólida, fitoesteroles, luffa cylindrica.

Abstract—The oil was extracted from seeds of *luffa cylindrica*, with a yield of 8,45 %. The oil was saponified, the unsaponifiable matter was extracted, which was subsequently derivatized by silylation. The recovery was evaluated with stigmasterol by solid phase extraction (SPE), using silica cartridges; showing very high recovery percentage 82,96%. The gas chromatography technique was standardized with flame ionization detector (GC-FID) for the analysis of phytosterols, which evaluated the statistical parameters: accuracy, detection limit and quantitation, sensitivity, linearity (correlation coefficient) and accuracy, achieving tolerable values for the analysis of phytosterols in oily matrices. The oil showed the β sitosterol and stigmasterol as phytosterols majority in the seed, with 2551,1 and 211,19 ppms respectively, was confirmed by mass spectrometry.

Key Word — phytosterols, luffa cylindrica, gas chromatography, solid phase extraction

I. INTRODUCCIÓN

Los fitoesteroles o esteroles vegetales están presentes en las plantas, aceites vegetales, semillas, frutos secos, cereales y legumbres, además son importantes componentes para las industrias de la salud en la fabricación de esteroides y la producción de fármacos, la nutrición y en la cosmética. Este nuevo espectro de aplicaciones ha generado la necesidad de controlar y cuantificar este tipo de sustancias [1, 2].

La Universidad Tecnológica de Pereira cuenta con el Grupo de Investigación de Oleoquímica donde actualmente se han estado adelantando investigaciones que involucran los fitoesteroles. En este caso se ha pretendido ampliar el conocimiento sobre la semilla de estropajo, que actualmente se presenta como un subproducto no aprovechado por la industria regional.

Para ello se realizó la estandarización de la técnica de cromatográfica, con el fin de ampliar el portafolio de análisis que permita el soporte técnico y científico del grupo de investigación, hacia la comunidad académica e industrias productivas.

La cromatografía de gases (CG) es un método físico de separación en que los componentes individuales de una mezcla gaseosa se distribuyen entre dos fases, una de las cuales es líquida (fase estacionaría) mientras que la otra es un gas (fase móvil). Los componentes individuales de la muestra son separados entre si, en función de las presiones de vapor y la afinidad con la fase estacionaria [3]. La cromatografía de gases por presentar una buena sensibilidad y obtener una buena separación, se emplea en el análisis de mezclas complejas como lo son los componentes tipo esterol en muestras vegetales y animales [4, 5].

Estandarizar consiste en verificar y documentar un método analítico y que este conduzca con un alto grado de seguridad, a la obtención de resultados precisos y exactos dentro de las especificaciones y los atributos de calidad previamente establecidos como precisión, límite de detección y cuantificación, sensibilidad, linealidad y exactitud.

Fecha de Recepción: 23 de Enero de 2013 Fecha de Aceptación: 21 de Mayo de 2013 La estandarización de las metodologías analíticas, junto a otras actividades englobadas en la gran área del aseguramiento de la calidad permite conseguir calidad, otorgando la confianza necesaria a la vez que confiere un grado elevado de afinidad entre los resultados de los análisis químicos [6].

II. MATERIAL Y MÉTODOS

A. Material de muestra

Como estándares de referencia se empleó una mezcla preparada a partir de cuatro estándares de fitoesteroles marca SUPELCO ver tabla 1.

Referencia	Fitoesteroles	Concentración		
481-21-0	5α-Colestano	10 mg/mL		
80-97-7	Colestanol	10 mg/mL		
57-87-4	Ergosterol	10 mg/mL		
83-48-7	Estigmasterol	10 mg/mL		
85-46-5	β-Sitoesterol	100 μg/mL		

Tabla 1. Estándares de fitoesteroles.

Como muestra real, se utilizó las semillas de *luffa cylindrica* frescas, obtenidas del municipio de Marsella en el departamento de Risaralda, Colombia. La extracción del aceite de semillas de *luffa cylindrica*, se realizó por el método soxhlet, utilizando como solvente n-hexano en una relación muestra: solvente (1:5), por un periodo de dos horas, con base en estudios previos [7].

B. Preparación de la muestra

La muestra de aceite de saponificó según la norma ICONTEC NTC 235-2 [8]; de allí se obtuvo la materia insaponificable donde se evaluó la técnica de extracción en fase sólida, para la obtención de la fracción de fitoesteroles, la cual se efectuó con cartuchos de sílica gel (fase normal) con capacidad de 3mL/ 500 mg marca RESTEK referencia (24035).

Las fracciones obtenidas a partir de la extracción en fase sólida, se evaluaron por cromatografía en capa delgada (CCD), mediante el uso de cromatofolios de CCD de sílica gel 60 F254 como fase estacionaria de 5.2 x 2.5 cm. Con esta técnica se realizó la caracterización preliminar empleando como fase móvil hexano: éter etílico: ácido acético (8: 2: 0.1), utilizando como revelador ácido fosfomolíbdico preparado al 10% en etanol absoluto.

Una vez se caracterizaron las fracciones obtenidas, se sometieron al proceso de derivatización con SILYL-991 (BSTFA + 1% TMCS) referencia (MACHEREY-NAGEL 701490.201) se agitaron por 30 segundos y se colocaron en un baño de agua a 70°C por 30 minutos [7].

C. Porcentaje de recuperación

El porcentaje de recuperación de la técnica de extracción en fase sólida, se determinó mediante la adición de tres muestras de aceite de semillas de *luffa cylindrica*, con un patrón de 200 ppm de estigmasterol, realizado por triplicado, luego se comparó con un triplicado sin adición.

D. Parámetros instrumentales

El equipo utilizado para la estandarización fue el cromatógrafo de gases con detector de ionización de llama marca Shimadzu GC-2014, equipado con autoinyector AOC-20i+s, automuestrador AOC-20s, inyección Split-Splitless, y columna MXT5 serie 508529G1 (30m de longitud x 0.25mm I.D. 0,5 μ m de espesor de película).

Las condiciones que se establecieron para los análisis cromatográficos fueron: gas de arrastre Helio, flujo total 45 mL/min, flujo en la columna 4 mL/min, velocidad lineal 74 cm/s, temperatura del inyector 350 °C, volumen de inyección 1 μL , modo de inyección split, radio split 10, temperatura de la columna 250 °C durante 2 minutos, después se llevo hasta 280 °C con razón 40 °C/min y se mantuvo así durante 17 minutos, como detector se empleó ionización de llama (DIL) a una temperatura de 310 °C.

La confirmación se llevó a cabo por medio de espectrometría de masas, por impacto electrónico en un cromatógrafo de gases acoplado a un espectrómetro de masas (GCMS-QP2010 Shimadzu), equipado con autoinyector AOC-20i Shimadzu y columna Rtx-5sil MS Crossbond (30 m de longitud x 0,25mm).

Las condiciones que se establecieron para los análisis cromatográficos fueron: gas de arrastre helio, flujo total 45 mL/min, flujo de columna 1 mL/min, velocidad lineal 74 cm/s, temperatura del inyector 310 °C, volumen de la inyección 1 μL , modo de inyección Split, radio Split 20, temperatura de la columna 250 °C durante 5 minutos, después se llevó hasta 280 °C con razón de 40 °C/min y se mantuvo así durante 25 minutos, como detector se empleo espectrómetro de masas MS-UP2010 system, con una Temperatura del detector: 260 °C e Ionización por impacto electrónico a 70 eV.

E. Niveles de concentración de fitoesteroles

Con la mezcla de los estándares de fitoesteroles, se hicieron varias diluciones; se establecieron seis niveles descritos en la tabla 2.

	Niveles					
Estándar	1	2	3	4	5	6
5α Colestano (ppm)	2,10	4,20	8,40	12,0	32,0	60,0
Colestanol (ppm)	3,15	6,30	12,6	18,0	48,0	90,0
Ergosterol (ppm)	5,25	10,5	21,0	30,0	80,0	150,0
Estigmasterol (ppm)	3,15	6,30	12,6	18,0	48,0	90,0

Tabla 2. Niveles de concentración de los fitoesteroles.

Se obtuvieron curvas de calibración para cada estándar y se calcularon los parámetros estadísticos: precisión, límite de detección y cuantificación, sensibilidad, linealidad (coeficiente de correlación); para calcular la exactitud se prepararon por triplicado tres niveles de concentración diferentes. Al obtener las mediciones de cada concentración se cálculo el porcentaje de error y de allí la exactitud.

III. RESULTADOS Y DISCUSIÓN

A. Extracción del aceite de semillas de *luffa* cylindrica

El aceite de semillas de *luffa cylindrica* obtenido presentó una tonalidad verde oscura (figura 1) y un porcentaje de rendimiento de extracción del 8,45%.

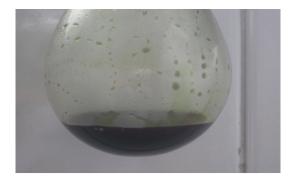


Figura 1. Aceite de semillas de luffa cylindrica.

B. Extracción de la materia insaponificable

La materia insaponificable obtenida del aceite de semillas de *luffa cylindrica* presentó una coloración amarilla y un aspecto sólido (figura 2) con un porcentaje de rendimiento de 1,8465%.

Figura 2. Materia insaponificable del aceite de semillas de *luffa* cylindrica.

C. Porcentaje de recuperación

Los porcentajes de recuperación obtenidos para el estigmasterol en las muestras de aceite de semillas de *luffa cylindrica* son presentados en la tabla 3.

Muestra de Aceite	Concentración patrón (ppm)	Porcentaje de recuperación
1	200	80.50
2	200	80.13
3	200	85.25

Tabla 3. Datos de porcentaje de recuperación para el estándar estigmasterol.

De acuerdo con los resultados de la tabla 3, la extracción en fase sólida (SPE) para el estigmasterol exhibió buenos resultados con porcentajes de recuperación con promedio de 82,96%, Al comparar con la literatura científica, se encuentra que los porcentajes de recuperación de algunos fitoesteroles varían entre 80-100%, como un ejemplo de esto se puede citar el aceite de oliva, en el cual se han reportado porcentajes de recuperación entre 70-110% para el estigmasterol y β -sitoesterol respectivamente [1, 5]. Por lo anterior se adaptódicho método de recuperación que se acercan mucho a los encontrados en estudios previos.

D. Estandarización de la técnica cromatográfica

Se elaboraron las curvas de calibración para cada uno de los compuestos, en la figura 3, se presenta la curva de calibración del estigmasterol.

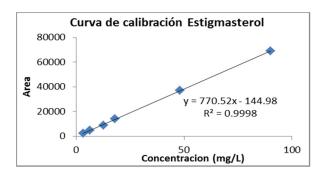


Figura 3. Curva de calibración del estigmasterol.

En la tabla 4, se puede observar los datos estadísticos, empleados para la calibración de los estándares.

R²: coeficiente de correlación

Cv: Coeficiente de variación estándar

LD: Límite de detección LC: Límite de cuantificación

S: Sensibilidad

Como se observa en la tabla 4, Los coeficientes de correlación (R^2) obtenidos fueron en promedio de 0,9997; indicando una linealidad adecuada y una correlación entre las variables adecuada [6]. La precisión del método evaluada con el coeficiente de variación (C_v) se encuentra dentro de los valores aceptados (menores al 5%) indicando una buena precisión, reproducibilidad y repetibilidad.

Nombre	\mathbb{R}^2	C _v	LD	LC	S
Nombre	ı, ı,		(ppm)	(ppm)	(ppm/área)
Colestano	0,9996	3,85	0,0488	0,1094	828,01
Colestanol	0,9993	4,37	0,2566	0,4593	897,2
Ergosterol	0,9999	4,72	0,4696	0,6586	206,4
Estigmasterol	0,9999	4,27	0,1523	0,1927	770,5

Tabla 4. Resultados estadísticos obtenidos para las curva de calibración

Según la tabla 4, Los límites detección (LD) obtenidos se encuentran en una rango de (0,0488 y 0,4696) ppm; y los límites de cuantificación (LC) entre (0,1094 y 0,6586) ppm, estos valores son buenos, ya que los esteroles vegetales constituyen la mayor porción de la materia insaponificable de los aceites vegetales [2], por tanto el método tiene la capacidad de detectar y cuantificar fitoesteroles a muy bajas concentraciones en matrices oleosas.

El valor de sensibilidad esta asociado al valor de la pendiente de las curvas de calibración [9], como se aprecia en la tabla 4, La sensibilidad de cada una de las curvas de

calibración fue buena debido a pendientes considerables demostrando una sensibilidad significativa del método, lo que indica que el método detecta los mínimos cambios de concentración del analito en las muestras.

La exactitud se cálculo mediante el porcentaje de error, estos se muestran en la tabla 5, donde se pueden observar los valores obtenidos para la exactitud del método.

Estándar	concentración real (ppm)	Concentración experimental (ppm)	%Error
	4,2	4,21	0,24
Colestano	12,0	12,15	1,30
	60,0	59,86	0,23
	6,3	6,24	0,95
Colestanol	18,0	18,36	2,00
	90,0	91,03	1,10
	10,5	10,55	0,48
Ergosterol	30,0	30,51	1,70
	150,0	151,13	0,75
	6,3	6,32	0,32
Estigmasterol	18,0	18,35	1,90
	90,0	90,86	0,96

Tabla 5. Resultados estadísticos obtenidos para el cálculo de exactitud.

Como se aprecia en la tabla 5, los porcentajes de error entre los valores reales y experimentales fueron menores al 5%, lo que indica que la exactitud del método es buena, por consiguiente los valores experimentales son muy próximos a los reales.

E. Análisis cromatográfico de la muestra real.

El análisis del aceite de las semillas de *luffa cylindrica* (figura 4) reporta como fitoesterol mayoritario el β -sitoesterol a una concentración de 2551,1 mg de β -sitoesterol por Kg de aceite, seguido de estigmasterol con una concentración de 211,19 mg de estigmasterol por Kg de aceite.

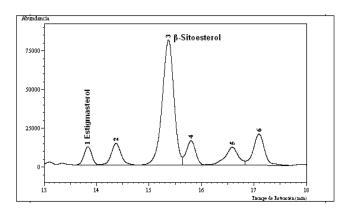


Figura 4. Cromatograma de fitoesteroles en la materia insaponificable.

Para la confirmación y análisis de los demás fitoesteroles que se encontraron presentes (de los cuales no se tenían estándares) se realizó un ensayo por medio de cromatografía de gases acoplado a espectrometría de masas (CG-EM), cuyos resultados se analizaron por comparación de sus espectros de masas con los reportados por la biblioteca WILEY ACCESS PAC 7 ED y por el análisis de sus principales fragmentos. En la tabla 6, se aprecia los compuestos identificados.

Pico	Nombre	% Similitud
2	$3-\beta$, $5-\alpha$ - 7-Ergosten-3-ol	76
4	3-β-5-α-22-ξ-7,22-Ergostadien-3-ol	77
5	3-β-5,24(28)-Ergostadien-3-ol	75
6	Lanosterol	86

Tabla 6. Análisis composicional por cromatografía de gases acoplado a espectrometría de masas de la materia insaponificable del aceite de las semillas de la *Luffa Cylindrica*

Según la tabla 6, se encontró que en la materia insaponificable del aceite de semillas de *luffa Cylindrica* contiene derivados del ergosterol y lanosterol, reiterando la composición revelada para la *luffa cylindrica* por parte de investigaciones previas [10].

Se realizó el análisis de los principales fragmentos de cada uno de los compuestos, en la figura 5, se presenta el espectro de masas del compuesto "3-β-5-α-7-Ergosten-3-ol" con un porcentaje de similitud de 76% e ion molecular de m/z 400 y como pico base m/z 69. Según el análisis de sus principales fragmentos mostrados en el espectro de masas de la (figura 5) y la ruta de fragmentación realizada (figura 6), muestra iones característicos para esteroles como: m/z 385 (perdida de metil), m/z 367 (perdida de metil y agua), m/z 273 (perdida de la cadena lateral), m/z 255 (perdida de cadena lateral y agua), m/z 231 (fisión del anillo D) y m/z 213 (fisión del anillo D - agua) [11, 12, 13, 14] confirmado la presencia de esteroles en la fracción insaponificable.

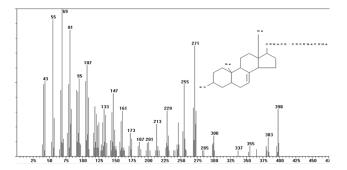


Figura 5. Espectro de masas del compuesto "3- β -5- α -7-Ergosten-3-ol"

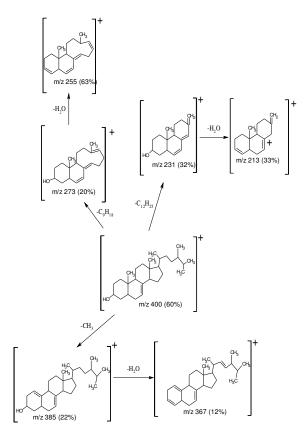


Figura 6. Ruta de fragmentación del compuesto "3- β -5- α -7-Ergosten-3- α "

El análisis con detector de espectrometría de masas permitió identificar otros tipos de esteroles presentes en el aceite de semillas de *luffa cylindrica*, que no fue posible identificar con detector de ionización de llama (DIL), debido a la dependencia de utilizar estándares externos para su plena identificación, una desventaja en comparación con el detector de masas que permite identificar y cuantificar por medio de la comparación de sus espectro por los reportados en bibliotecas.

De acuerdo a los esteroles encontrados en el aceite de semillas de $\it luffa\ cylindrica\ como\ el estigmasterol que actúa como intermediario en la biosíntesis de los andrógenos, los estrógenos, y corticoides, además que previene tipos de cáncer, incluyendo los ovarios, próstata, mama y cánceres de colon [15]. El <math>\beta$ -sitoesterol posee propiedades inmonumoduladoras, antiinflamatorias, antibacterianas, antifúngicas y antitumorales [16].

El Lanosterol es un compuesto que no posee actividad alergénica [7], y el Ergosterol es una sustancia que, bajo la acción de los rayos ultravioletas del sol sobre la piel, da lugar a la vitamina D. Esta vitamina interviene en el metabolismo del calcio y del fósforo, estimula la formación del hueso, además estudios clínicos han mostrado que estos esteroles cuando son consumidos ofrecen protección contra las enfermedades cardiovasculares [17].

IV. CONCLUSIONES

El aceite de semillas de *luffa cylindrica* tiene porcentaje de 8,45% de aceite y un porcentaje de materia insaponificable de 1,8465%; la recuperación de esteroles por la técnica de extracción en fase sólida (EFS), arrojó un porcentaje de recuperación de 82,96 % indicando una buena recuperación de los analitos.

Las semillas de *luffa cylindrica* contiene como fitoesterol mayoritario el β -sitoesterol con una concentración de 2551,1 mg de β -sitoesterol por Kg de aceite, seguido de estigmasterol con una concentración de 211,19 mg de estigmasterol por Kg de aceite.

Se estandarizó la técnica cromatografía de gases con detector de ionización de llama para el análisis de fitoesteroles, mostrando valores estadísticos adecuados para la cuantificación de estos; con coeficientes de correlación (R²) cercanos a la unidad, los límites de detección y cuantificación por debajo de 0,5 ppm, y valores de sensibilidad altos, presentado una exactitud con porcentaje de error menores al 5% y una precisión con valores de coeficiente de variación inferiores al 5% indicando la precisión, reproducibilidad y repetibilidad de método demostrando así la validez de la técnica para el análisis de fitoesteroles .

El aceite de las semillas de *luffa cylindrica* demostró un buen contenido de fitoesteroles, lo que haría que este aceite puede tener un uso potencial en la industria haciendo parte de formulaciones farmacéuticas para el control del colesterol y algunos tipos de cáncer o ser utilizados para la fabricación productos nutracéuticos y cosmecéuticas.

V. RECOMENDACIONES

Se recomienda adquirir otros estándares que permitan la identificación y cuantificación de otros esteroles presentes en aceites vegetales, además de realizar un análisis por cromatografía de gases acoplado a espectrometría de masas (CG-EM) con un cambio en las condiciones del método que permita una mejor identificación de los compuestos.

Las semillas de *luffa cylindrica* por su contenido de esteroles puede ser utilizada en la industria alimenticia (productos que reduzcan el colesterol) y cosmética (protección contra la radiación UV, nutrientes para el cabello); pues todos estos serían de gran utilidad para darle valor agregado a la semilla y el aceite que lo hacen apto desde el punto de vista cosmético y terapéutico.

AGRADECIMIENTOS

- Al Grupo de Investigación de Oleoquímica por permitirnos realizar el trabajo de investigación.
- A la Vicerrectoría de Investigación, Innovación y Extensión de la Universidad Tecnológica de Pereira, por la financiación de esta investigación.

REFERENCIAS

- [1] A. Rocco, S. Fanali. "Analysis of phytosterols in extra-virgin olive oil by nano-liquid chromatography." Journal of Chromatography. A, Vol. 1216, Issue 43, 23, pp. 7173-7178. October. 2009.
- [2] S.L. Abidi. "Chromatographic analysis of plant sterols in foods and vegetable oils." Journal of Chromatography A, Vol. 935, Issues 1-2, pp.173-201. November. 2001.
- [3] H. M. Mcnair, J. M. Miller. *Basic gas chromatography*. 2nd ed., New Jersey: John Wiley & sons, inc., publication. 2009, pp. 3-4.
- [4] L. Wen-Hui, D. Bin, R. Xiao-Ming, X. Hai-Tao, Y. Jun, L. Shao-Min. "Analysis of free and conjugated phytosterols in tobacco by an improved method using gas chromatography—flame ionization detection". Journal of Chromatography A, Vol. 1163, Issues 1-2, pp. 304-311. September 2007.
- [5]S. Cunha, J. O. Fernández, M. B.P.P. Oliveira. "Quantification of free and esterified sterols in Portuguese olive oils by solid-phase extraction and gas chromatography–mass spectrometry." Journal of Chromatography A, Vol. 1128, Issues 1-2, pp. 220-227. September. 2006.
- [6] L. Aguirre Ortega, et al., "Validación de métodos analíticos," ed. A.E.F. Industria. 2001, España.
- [7] J. Fernández Tenorio, L. Arcila González. "Estudio de la fracción insaponificable obtenida del aceite extraído de la semilla de la luffacylindrica." Tesis de grado, Facultad de Tecnologías, Universidad Tecnológica de Pereira, 2008.
- [8] Norma Colombiana ICONTEC NTC 235-2, Grasas y aceites animales y vegetales. *Determinación de la materia insaponificable. Método de extracción con Hexano*. Instituto Colombiano de Normas Técnicas, Santa Fe de Bogotá, 2002.
- [9] D. A. Skoog, F. J. Holler, S. R. Crouch. *Principios de análisis instrumental*, 6th ed., México: Cengage Learning Editores. 2008.
- [10] A. Adewuyi, P. A. Oderinde, *Analysis of the lipids and molecular speciation of the triacylglycerol of the oils of luffa cylindrica and adenopus braviflorus*. Journal of food. First article pp. 1-8. 2012.

- [11] A. Martínez.(2002, Apr.). *Esteroles.*, Universidad de Antioquia, Medellín, Colombia. [Online]. Available: http://farmacia.udea.edu.co/~ff/esteroles2001.pdf
- [12] A. Cherif, K. Belkacemi, H. Kallel, P. Angers, J. Arul, S. Boukhchina. *Phytosterols, unsaturated fatty acid composition and accumulation in the almond kernel during harvesting period: Importance for development regulation.* Comptes Rendus Biologies, Vol. 332, Issue 12, pp. 1069-1077. December. 2009.
- [13] I. Nieto, M. Valencia. Esteroles, ácidos grasos e hidrocarburos de los cuerpos fructíferos de ganoderma australe. Boletín de la Sociedad Chilena de Química. Vol. 47, pp. 511-516. December. 2002.
- [14] H. Valle, P. Santafé, G. Gilmar. *Esteroles libres de la esponja marina Mycalelaevis*. Revista Vitae. Vol. 16, pp. 103-109. April. 2009.

- [15] P. Sundararaman, C. Djerassi, A convenient synthesis of progesterone from stigmasterol. Journal organic chemistry, pp. 42. 1977.
- [16] J.W. Chai, U.R. Kuppusamy, M.S. Kanthimathi. *Beta-sitosterol Induces Apoptosis in MCF-7 Cells*. Malaysian Journal of Biochemistry and Molecular Biology. 16 (2), pp. 28-30. 2008
- [17] X. Jia, N. Ebinea, Y. Wangb, A. Awadc, P. Jones, *Effects of different phytoesterol analogs on clonic mucosal cell proliferation in hamsters*. Journal of nutritional biochemistry 17 (2006), 396-401.