

Ingeniería y Desarrollo

ISSN: 0122-3461

ingydes@uninorte.edu.co

Universidad del Norte

Colombia

Urbano O., Franco Arturo; Chanchí G., Gabriel E.; Campo M., Wilmar Yesid; Bermúdez

O., Héctor Fabio; Astaiza Hoyos, Evelio

Testing environment for video streaming support using open source tools

Ingeniería y Desarrollo, vol. 34, núm. 2, julio-diciembre, 2016, pp. 233-253

Universidad del Norte

Barranquilla, Colombia

Available in: http://www.redalyc.org/articulo.oa?id=85246475005

 How to cite

 Complete issue

 More information about this article

 Journal's homepage in redalyc.org

Scientific Information System

Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal

Non-profit academic project, developed under the open access initiative

http://www.redalyc.org/revista.oa?id=852
http://www.redalyc.org/revista.oa?id=852
http://www.redalyc.org/articulo.oa?id=85246475005
http://www.redalyc.org/comocitar.oa?id=85246475005
http://www.redalyc.org/fasciculo.oa?id=852&numero=46475
http://www.redalyc.org/articulo.oa?id=85246475005
http://www.redalyc.org/revista.oa?id=852
http://www.redalyc.org

* Ingeniero en Electrónica y Telecomunicaciones. Magister en Ingenie-
ría. Área Telemática, Universidad del Cauca. Profesor del programa de In-
geniería de Sistemas de la Fundación Universitaria de Popayán. frurbano5@
gmail.com.

** Ingeniero en Electrónica y Telecomunicaciones. Magister en Inge-
niería Telemática. PhD(c) Candidato a Doctor en Telemática, Universidad
del Cauca. Profesor del programa de Ingeniería Informática de la Institu-
ción Universitaria Colegio Mayor del Cauca. gchanchi@unimayor.edu.co.

*** Ingeniero en Electrónica y Telecomunicaciones. Magister en In-
geniería. Área Telemática. Doctor en Ingeniería Telemática, Universidad
del Cauca. Profesor asistente de la Universidad del Quindío. Investigador
grupo GITUQ. wycampo@uniquindio.edu.co.

**** Ingeniero en Electrónica y Telecomunicaciones. Magister en Elec-
trónica y Telecomunicaciones. Profesor asociado Universidad del Quin-
dío. Investigador grupo GITUQ. hfbermudez@uniquindio.edu.co.

***** Ingeniero en Electrónica y Telecomunicaciones. Magister en In-
geniería. PhD(c) Ciencias de la Electrónica. Profesor asociado Universidad
del Quindío. Investigador grupo GITUQ. eastaiza@uniquindio.edu.co.

Correspondencia: Héctor Fabio Bermúdez O. Universidad del Quin-
dío. Programa de Ingeniería electrónica. Tel 57 (6) 7359353 Ext 108, Carrera
15 Calle 12 Norte. Armenia Colombia.

Franco Arturo Urbano O.*
Fundación Universitaria de Popayán (Colombia)

Gabriel E. Chanchí G.**
Universidad del Cauca (Colombia)

Wilmar Yesid Campo M.***
Héctor Fabio Bermúdez O.****

Evelio Astaiza Hoyos*****
Universidad del Quindío (Colombia)

ARTÍCULO DE INVESTIGACIÓN / RESEARCH ARTICLE
	 http://dx.doi.org/10.14482/inde.34.2.6752

Testing environment for video streaming
support using open source tools

Entorno de pruebas para el soporte de
videostreaming usando herramientas libres

Volumen 34, n.o 2
Julio-diciembre, 2016
ISSN: 0122-3461 (impreso)

2145-9371 (on line)

mailto:hfbermudez@uniquindio.edu.co
mailto:eastaiza@uniquindio.edu.co

Franco Arturo Urbano O., Gabriel E. Chanchí G., Wilmar Yesid Campo M.
Héctor Fabio Bermúdez O., Evelio Astaiza Hoyos

334 Ingeniería y Desarrollo. Universidad del Norte. Vol. 34 n.° 2: 333-353, 2016
ISSN: 0122-3461 (impreso)

2145-9371 (on line)

Fe
ch

a
de

 re
ce

pc
ió

n:
 1

1
de

 s
ep

tie
m

br
e

de
 2

01
4

Fe
ch

a
de

 a
ce

pt
ac

ió
n:

 1
 d

e
ju

ni
o

de
 2

01
6

Abstract

Among the different technologies with important implications today in
such areas as education, health and business, videostreaming is highlighted.
This considering how this technology facilitates the access to multimedia
content remotely, live or offline. The goal of this paper is to propose a test
environment for the support of the video streaming service, using open
source tools. Moreover, this work proposes, as part of the environment,
a stress measurement tool (Hermes), which allows obtaining the response
times to establish multiple RTSP connections to streaming servers. The
methodology used in this work is divided into four phases: analysis of
technologies and tools, configuration of the video streaming environment,
design and implementation of Hermes, and finally tests. This methodo-
logy allowed the construction of the test environment and its evaluation,
through the stress measurement tool Hermes. Finally, in this work we
demonstrate how the proposed environment becomes a reference point
for different application environments that require the implementation
of a video streaming service.

Palabras clave: Hermes, open source tools, RTSP, test environment,
video streaming.

Resumen

Dentro de las tecnologías que hoy en día tienen implicaciones importantes
en ámbitos como la educación, la salud y el sector productivo, se destaca el
videostreaming. Esto teniendo en cuenta las ventajas que esta tecnología
ofrece para el acceso a contenidos multimedia de manera remota, en vivo
o fuera de línea. El objetivo de éste artículo es proponer un entorno de
pruebas para el soporte del servicio de videostreaming haciendo uso de
herramientas libres. Así mismo, este trabajo propone como parte de éste
entorno, una herramienta para la medición de estrés llamada Hermes, la
cual permite obtener los tiempos de respuesta producto de las múltiples
conexiones RTSP a servidores de streaming. La metodología usada para el
desarrollo de este trabajo está dividida en 4 fases: análisis de tecnologías
y herramientas, configuración del entorno de videostreaming, diseño
e implementación de Hermes y pruebas. Está metodología permitió la
construcción del entorno de pruebas y su evaluación, a través de la herra-
mienta de medición de estrés Hermes. Finalmente, mediante este trabajo
se demuestra como el entorno de pruebas presentado, se convierte en un
punto de referencia para diversos entornos de aplicación que requieran
el montaje e implementación del servicio de videostreaming.

Keywords: entorno de pruebas, Hermes, herramientas libres, RTSP,
videostreaming.

TESTING ENVIRONMENT FOR VIDEO STREAMING SUPPORT USING OPEN SOURCE TOOLS

335Ingeniería y Desarrollo. Universidad del Norte. Vol. 34 n.° 2: 333-353, 2016
ISSN: 0122-3461 (impreso)
2145-9371 (on line)

INTRODUCCIÓN

Internet has allowed file downloading since the early stages of its develop-
ment. Initially it was intended to be a network to share information among
distant people geographically located and to access files that would not
have been available to consult before its existence; giving special emphasis
on the access to the information, even if you had to wait a long time while
the file was being downloaded. Nevertheless the Internet evolved, making
access to audio and video with file sizes measured in Megabytes, with
good quality and acceptable downloading times. However, until recently,
the technology supporting the Internet for downloading audio and video
required the client machine to completely download the files before the
user could see and hear the content, which brought drawbacks such as:
rather long transferring times and the difficulty of real-time visualization.
This situation is further complicated when considering that until recently,
in developing countries, the bandwidth of most networks was measured
in kilobytes.

In this context is where a technology called streaming came about, which
continuously requests video data (video streaming) or audio sent to the
server and in response it sends streams of data, which are not all com-
pletely downloaded, in order to hear the sound or see the images on the
client-side, instead, the video can be watched and the sound can be heard
as the streams that make up the requested file arrive. This type of network
workload significantly improves waiting times and allows manipulating
multimedia files, live or recorded [1].

Among the advantages of the video streaming are its low requirements,
since a conventional server and a connection of at least 512Kb is sufficient.
In terms of the clients’ firewalls, these will not cause any problems for
transmission. Moreover, video streaming is not only intended to be used
by a client to receive a media file, it is also an ideal tool to be used in edu-
cation, business or management fields as it allows transmitting or retrans-
mitting conferences, lectures, events, programs, seminars, tele-education,
interviews, and more. Social networks on the internet are so far the more
widespread social phenomenon because of the speed with which its users
have multiplied in a very short period of time, and part of that success is
due to video streaming [2].

Franco Arturo Urbano O., Gabriel E. Chanchí G., Wilmar Yesid Campo M.
Héctor Fabio Bermúdez O., Evelio Astaiza Hoyos

336 Ingeniería y Desarrollo. Universidad del Norte. Vol. 34 n.° 2: 333-353, 2016
ISSN: 0122-3461 (impreso)

2145-9371 (on line)

Thus, the purpose of this research is to provide the scientific community
with a reference environment for video streaming support using open
source tools, supported by open source tools. Besides, we present a tool for
measuring stress for video streaming servers called Hermes. Similarly the
scientific pertinence of this research is to improve the quality of services
offered by organizations that wish to bring these environments into practice,
such as higher education institutions. To achieve the above, this research
started from the following hypothesis: it is possible to build video streaming
environments for different operating systems and different devices, using
open source tools for it.

At a technical level, there are standardized protocols designed for communi-
cation between clients and streaming servers. The first streaming protocols
were developed by multinational companies such as Microsoft, Real and
Apple, which saw the enormous potential in providing real-time video.
The following are two protocols that are commonly used: RTSP (Real Time
Streaming Protocol) y RTMP (Real Time Messaging Protocol).

RTSP is a no connection-orientated protocol to stream real-time data which
defines how the information is sent between the client and the server [3].
RTSP allows controlling the sending of multimedia content, either previously
stored or live. This protocol works at an application level and ensures that the
data is delivered successfully. RTSP defines different connection types and
different sets of requirements, to try and ensure that the data is sent over IP
networks as efficiently as possible. The RTSP protocol is independent from
the transport protocol and it may operate on UDP or TCP. Nevertheless,
in the majority of cases, the TCP protocol is used for controlling the player
and the UDP protocol for RTP data transmission [4]. In a session, a client
can establish or close reliable transport connections with the server using
RTSP requests [5], [6].

RTMP is a protocol developed by Macromedia, now Adobe, for high
performance transmissions of audio and video between Adobe Flash
Platforms, including Adobe Flash Player (AFP) and Adobe AIR [7]. The
protocol has been released as an open specification to develop products and
technology that permit the delivery of audio, video and data in SWF, F4V
and FLV, formats compatible with AFP. RTMP uses TCP at the transport
layer and supports multimedia streaming encoded in FLV (Flash Video),

TESTING ENVIRONMENT FOR VIDEO STREAMING SUPPORT USING OPEN SOURCE TOOLS

337Ingeniería y Desarrollo. Universidad del Norte. Vol. 34 n.° 2: 333-353, 2016
ISSN: 0122-3461 (impreso)
2145-9371 (on line)

a format offered by the FMS (Flash Media Server Adobe System). RTMP
has three variations: simple RTMP, which operates on TCP and uses port
1935, RTMPT (RTMP tunneled), which is encapsulated in HTTP requests
to overpass firewalls and RTMPS (RTMP Secure); functioning as RTMP
but with a secure HTTPS connection [8]. This protocol can be configured to
work with the UDP protocol. Currently, streaming servers that implement
the RTMP protocol are FMS, Wowza Media Server, Onlinelib VCS Video
Communication Server, WebORB Integration (available to .NET Java and
ColdFusion) and Red5 [9].

Based on the basic concepts and streaming protocols presented above, a set
of free tools and technologies in a testing environment are provided in this
work, which allows the transmission and reception of multimedia content
to different types of costumers (computer, phone, tablet) and on multiple
operating systems, using the RTSP streaming protocol. In the election of
this protocol, it was taken into account the need for open source tools for
studying and evaluating it in an academic environment. Thus, the test
environment was configured considering the most appropriate and most
widely used open source tools.

Experiments of this research were developed in the “Fundación Universitaria
de Popayán”, seeking to support the processes of distance learning offered
by the university, as well as broadening the range of educational resources
to students. In order to evaluate the proposed transmission environment,
stress tests on the RTSP streaming server were performed under extreme
conditions, in order to estimate its robustness and reliability. In the case of
web servers, there are several tools that simulate sequential and simultaneous
HTTP requests, being apache benchmark [10] one of the most prominent
options. However, in regards to servers based on the RTSP streaming pro-
tocol, it has not been evidenced the existence of a specific tool (and therefore
neither related work) that can assess the stress on a streaming server, given
the proper RTSP protocol format, with respect to the format of the HTTP
requests. From the above, in the present work, a tool for measuring stress
called Hermes was developed, as part of the testing environment, which
simulates the establishment of multiple simultaneous connections to the
hosted media content on a streaming RTSP server. The Hermes tool was
developed in Python programming language and it makes use internally

Franco Arturo Urbano O., Gabriel E. Chanchí G., Wilmar Yesid Campo M.
Héctor Fabio Bermúdez O., Evelio Astaiza Hoyos

338 Ingeniería y Desarrollo. Universidad del Norte. Vol. 34 n.° 2: 333-353, 2016
ISSN: 0122-3461 (impreso)

2145-9371 (on line)

of invocations to the streaming clients Open RTSP and VLC that run in the
background.

This work is intended as a reference for projects requiring the implemen-
tation of video streaming based on different application environments,
such as in the health sector and the education services sector. This article is
organized as follows: section 2 describes the methodology considered in the
development of this work; section 3 presents the technologies and concepts
used in the formulation of the testing environment; section 4 shows each
of the modules that make up the testing environment; section 5 includes
the memory consumption and connection establishment tests made on the
server-side with the Hermes tool; finally section 5 presents the conclusions
derived from this work, as well as possible future work based on this study.

METHODOLOGY

With the objective of performing the testing environment for video streaming
support, we developed this research in four phases: analysis of technologies
and tools, configuration of the video streaming environment, design and
implementation of Hermes, and finally tests (see Figure 1) [6].

Analysis of
technologies

and tools
Tests

Configuration
of the video
streaming

environment

Design and
implementation

of Hermes

Figure 1. Methodology

TESTING ENVIRONMENT FOR VIDEO STREAMING SUPPORT USING OPEN SOURCE TOOLS

339Ingeniería y Desarrollo. Universidad del Norte. Vol. 34 n.° 2: 333-353, 2016
ISSN: 0122-3461 (impreso)
2145-9371 (on line)

In the first phase, we chose a set of open source tools for video streaming
transmission, considering the processes of encoding, diffusion and reception
of video. In the second phase, we configured an end-to-end video streaming
scenario, taking into account the open source tools chosen in the first pha-
se. In the third phase, we built a stress measurement tool called Hermes,
using the characteristics of the RTSP server configured in the phase two. It
is important to emphasize that the second and third phases were develo-
ped simultaneously, in order to allow the iterative building of the Hermes
tool. Finally, in the fourth phase, we performed the memory consumption
and connection establishment time tests from streaming server, using
Hermes. This paper addressed the methodology phases as follows: section
3 comprehends the phase of analysis of technologies and tools, section 4
includes the phase of configuration of the video streaming environment
and the phase of design and implementation of Hermes, finally section 6
covers the phase of tests [6].

TERMINOLOGY

A video can be understood as a series of images that are displayed one
after the other, which gives the sense of movement. In turn, an image can
be represented as a matrix of dots (pixels), each with its corresponding
color. The properties of videos are described in [8]. Another key concept
is that of a Codec, which is an algorithm that is both the compression and
encryption of video, its final purpose is to compress, encode and encrypt
information in order for it to be stored in a disk or transmitted over the
network. In order to implement client applications, a codec can be found
in an external library, and the application simply calls it when it detects
that a video is in that particular format [11].

Among the most used video formats we have the following: MPEG-1 first
set of standards and video compression formats and audio designed by
MPEG (Moving Picture Experts Group). MPEG-2 is a higher quality version
of MPEG, which can encode with interlacing. MPEG-4 is an ISO/IEC stan-
dard, improved version of the MPEG-2 codec and supports more audio and
video than their predecessors [11], [12]. H.264 is technically identical to the
MPEG-4 codec part 10, and its goal is to get better quality at a lower bitrate
than older formats [13], and 3GP is a reduced version of MPEG-4 Part 14
container, designed to minimize storage and bandwidth requirements [14].

Franco Arturo Urbano O., Gabriel E. Chanchí G., Wilmar Yesid Campo M.
Héctor Fabio Bermúdez O., Evelio Astaiza Hoyos

340 Ingeniería y Desarrollo. Universidad del Norte. Vol. 34 n.° 2: 333-353, 2016
ISSN: 0122-3461 (impreso)

2145-9371 (on line)

The basic requirements in choosing a tool for a video streaming system using
open source technologies are: the use of the free and open software, added
value services (playlists, rate adaptation, multicast), development flexibility
(more alternatives for project implementation), and lower response times
for operations performed by the system user (play, stop, forward). For the
transmission environment configuration, the following servers, clients and
codification tools were explored:

•	 Darwin Streaming Server: DSS, this server can transmit video over
the internet, LAN and WLAN, using RTP, RTSP and SDP (Session
Description Protocol) protocols. It is an open version of the Quickti-
me Streaming Server and is able to work as an MP3, MP4 and 3GP
hinted file server. It does not support real time rate adaptation. Its
main disadvantage is its unreliable statistics (CPU, throughput) [15].

•	 Catastreaming (Open Streaming Server), which is an Open Source
project released under General Public License (GNU) whose main
features are: an open source server, its support of protocols: RTP,
RTSP, SDP, it does not support rate adaptation in real time, no GUI,
but it allows connection to http servers and XML pages. In addition,
there should be a http request for each query, there is no technical
support, and the statistics are unreliable [16].

•	 Helix DNA Server is an open version of the Helix Universal Server
available on its project webpage. It is distributed under the General
Public License (GNU). Its main features: open source server and
RTP, RTSP, SDP support. This server does not support 3gp files [17].

•	 Helix Universal Server is the commercial version of Helix DNA,
which allows rate adaptation on the server. It also provides a
complete software package that can be used, among other things,
to encode the material. It has not been considered since it is not an
open source software [17].

•	 Quicktime Streaming Server (QTSS) is the commercial version of
Darwin Streaming Server. It contemplates all the characteristics
of this type of server features, but it is also not a free version. In

TESTING ENVIRONMENT FOR VIDEO STREAMING SUPPORT USING OPEN SOURCE TOOLS

341Ingeniería y Desarrollo. Universidad del Norte. Vol. 34 n.° 2: 333-353, 2016
ISSN: 0122-3461 (impreso)
2145-9371 (on line)

fact, it is only distributed with a server version of the Mac OS X
operating system [18].

LIVE555 is a streaming media server supported on the streaming
protocols: RTSP, RTP and SDP. This server is an open application
whose source code is available and can be modified for specific
requirements. LIVE555 is compatible with media players like VLC
and QuickTime. This server can generate different types of strea-
ming media files, such as: MPEG TransportStream (.ts), WebM or
Matroska (mkv or .webm), MPEG-1, MPEG-2 (mpeg), MPEG-4
(.m4e), H.264 (.264), DV (.dv), WAV (wav), MP3 (mp3), AMR (.amr),
AAC (aac) .These streams can be received and / or reproduced by
any RTSP / RTP media client, some of which include: VLC Media
Player, OpenRTSP, QuickTime Player and Amino Set-Top Boxes
[6], [19]. Considering that the state of the art that was analyzed, this
server meets the specified requirements.

•	 VLC: It is an open and cross-platform (Windows, Linux, Mac OS X,
Solaris, BeOS, etc.) media player. It can reproduce MPEG-1, MPEG-2
and MPEG-4 / DivX files from a CD-ROM, DVD, VCD hard drive
or from a satellite card (DVB-S). VLC supports unicast or multicast
transmission with IPV4 or IPV6. It allows the reproduction and
distribution of content on demand using streaming protocols (RTP
/ RTCP, RTSP) and 3GP files. If a client makes a request like rtsp://
ip:port/resource, then they can access the specified file. Although
VLC is a good tool for multicast transmission and transcoding, it
does not seem to be suitable to develop a streaming video on de-
mand service. Although it is not an interesting option as a streaming
server, it can be used as a transcoder, or even as an alternate server
[6], [20]. It is being used in this article as a streaming client.

To decode a stream, VLC first demultiplexes it. This implies that
it processes the container format and separates audio, video, and
subtitles. Thus, each of these streams is sent to their decoders, which
do the mathematical processing and decompress it. Furthermore,
VLC can work in silent mode, which means it can be run from
command line from any of the supported operating systems and

Franco Arturo Urbano O., Gabriel E. Chanchí G., Wilmar Yesid Campo M.
Héctor Fabio Bermúdez O., Evelio Astaiza Hoyos

342 Ingeniería y Desarrollo. Universidad del Norte. Vol. 34 n.° 2: 333-353, 2016
ISSN: 0122-3461 (impreso)

2145-9371 (on line)

can consume streaming without using GUI. It is also capable to
filter audio or video, if so desired [6].

•	 OpenRTSP: This is a command line software used to make the
complete request, but not to visualize the media content with all
its features. This software can be used to establish connections,
transmit, receive and record RTSP streaming. OpenRTSP retrieves
the session description (SDP), which enables to control over each
sub-session audio or video. The data received from each sub-session
are written in different output files extracted from the payload of
the RTP protocol [6], [14], [21].

Both VLC and OpenRTSP can work in silent mode and were used
in this research as video streaming service clients. In order for these
tools to be launched in the background, they are invoked from the
Python application (Hermes) proposed in this paper.

•	 Finally, as a coding tool, we explored FFmpeg, which is an open
source multimedia system to decode, encode, transcode, multiplex,
demultiplex, transmit, filter and play audio and video files. The
FFmpeg project aims to provide the best possible technical solution
for application developers and end users [21].

In this work LIVE555, VLC, OpenRTSP and FFmpeg were chosen, which
have a certain degree of maturity and development in working with mul-
timedia content, specifically as it relates to encoding, transmission and
reception in multiple platforms. The Hermes stress assessment tool uses
VLC OpenRTSP applications, which run in the background. Therefore,
by using multithreaded programming from the Python language, it was
possible to simulate simultaneous connections from multiple clients to the
live555 streaming server.

TESTING ENVIRONMENT

In this section we present a modular diagram and the diagram for end to
end implementation of all the different components of the testing environ-
ment, in which we highlight three key modules: the streaming RTSP server,
the client for consuming multimedia content, which uses this protocol, and

TESTING ENVIRONMENT FOR VIDEO STREAMING SUPPORT USING OPEN SOURCE TOOLS

343Ingeniería y Desarrollo. Universidad del Norte. Vol. 34 n.° 2: 333-353, 2016
ISSN: 0122-3461 (impreso)
2145-9371 (on line)

the tool for measuring stress, which simulates multiple clients connecting
to the server. Communication between the client, the stress measurement
tool and the server is performed across a wireless network, taking into
account the characteristics of mobility of the clients that were evaluated,
see Figures 2 and 3.

Figure 2. Testing Environment

Figure 3. Experimentation Scenario

Server Module

This module consists of live555 streaming server and multimedia content
in mpg format, see Figure 4. Live555 listens for RTSP requests on port

Franco Arturo Urbano O., Gabriel E. Chanchí G., Wilmar Yesid Campo M.
Héctor Fabio Bermúdez O., Evelio Astaiza Hoyos

344 Ingeniería y Desarrollo. Universidad del Norte. Vol. 34 n.° 2: 333-353, 2016
ISSN: 0122-3461 (impreso)

2145-9371 (on line)

8554 and supports the following media containers: .264, .aac, .ac3, .amr,
.dv, .m4e, mkv, .mp3, mpg, .ts, vob, wav, .webm. The media contents used
were coded in MPEG-1 codec (mpgv for video and mpga for audio) using
the open source encoding tool FFmpeg. This module was deployed on an
AMD Quad Core laptop with the Ubuntu 11.10 operating system.

Figure 4. Streaming Server and Diffused Content

Client Module

This module consists of three different mobile clients: a tablet with the An-
droid 4.0 operating system, a phone with the Android 2.3 operating system,
and a laptop with the Ubuntu 11.10 operating system. On the tablet, the
free media player used was Good Player For Android [22], which supports
the mpg container and the RTSP streaming protocol; on the cell phone the
free media player BS Player Free [23] was used, which supports the mpg
container and RTSP; and finally, on the laptop we made ​​use of two open

TESTING ENVIRONMENT FOR VIDEO STREAMING SUPPORT USING OPEN SOURCE TOOLS

345Ingeniería y Desarrollo. Universidad del Norte. Vol. 34 n.° 2: 333-353, 2016
ISSN: 0122-3461 (impreso)
2145-9371 (on line)

source tools that are widely used in the media field: VLC and OpenRTSP.
The basic difference between these 2 clients is that OpenRTSP is a software
module that has no graphical interface and has been developed to evaluate
the connection and consumption of multimedia content through RTSP, see
Figure 5.

Figure 5. Streaming Clients

Stress Assessment Module

This module consists of two streaming clients deployed on two laptops
with Ubuntu 11.10. Each client runs the Hermes tool in order to measure
the stress upon establishing a connection, using in each case a different tool
in the background to connect to the LIVE555 server (VLC and OpenRTSP).
For measurement purposes, each client is executed independently. In other
words, first measurements are taken with the VLC client running in the

Franco Arturo Urbano O., Gabriel E. Chanchí G., Wilmar Yesid Campo M.
Héctor Fabio Bermúdez O., Evelio Astaiza Hoyos

346 Ingeniería y Desarrollo. Universidad del Norte. Vol. 34 n.° 2: 333-353, 2016
ISSN: 0122-3461 (impreso)

2145-9371 (on line)

background and second measurements are taken with the OpenRTSP client
running in the background, see Figure 6.

Figure 6. Stress measurement tool, Hermes

The Hermes stress measurement tool consists of the functional modules
presented in Figure 7. In this diagram, the following main functional blocks
are distinguished: Graphical User Interface (GUI), Pitcher threads, executing
commands and Timer.

Tkinter library

Threading
library

Graphical user
interface

Thread
launcher

Timer

Os
library

Command
executer

Time library

VLC
command

Open RTSP
command

Figure 7. Modular Diagram for the Stress Measurement Tool Hermes

TESTING ENVIRONMENT FOR VIDEO STREAMING SUPPORT USING OPEN SOURCE TOOLS

347Ingeniería y Desarrollo. Universidad del Norte. Vol. 34 n.° 2: 333-353, 2016
ISSN: 0122-3461 (impreso)
2145-9371 (on line)

The GUI module uses the Tkinter library, which enables to create a set of
GUI components (buttons and text fields), through which are prompted
the address for the RTSP server to be evaluated and the number of simul-
taneous connections to be established. This interface also has two text fields
in which the total time to establish the simultaneous RTSP connections and
the average time of each connection are displayed. Meanwhile, the Thread
Launcher module creates an instance of a thread for every simultaneous
connection requested from the GUI, the above using the Python threading
library. Each started thread established an RTSP connection with the strea-
ming server LIVE555, so that for every n launches, n threads are generated
in parallel with the connections to the server.

The Command Executer module is invoked when a thread is started and
has the function of executing a command from the operating system (Linux
or Windows), to establish connections with a RTSP Server. The executed
command can be of two types: OpenRTSP Command or VLC Command.
The OpenRTSP command launches the OpenRTSP on the operating system’s
console, in order to establish the RTSP connection with the streaming ser-
ver, while the VLC command launches the VLC client on the OS console
in silent mode (without opening GUI), in order to establish a connection
with the RTSP server. In order to run the operating system command, the
Python OS library is used, which allows to interact directly with the system
console from within the programming language.

Simultaneously, when the threads are released and until the connection to
the streaming server is established, the Timer module begins counting in
milliseconds using the Python Time library. When the connection establis-
hment time for n simultaneous clients, it is possible to stop the process of
connecting using the OS library and the “killall” command on the Linux
operating system.

STRESS TESTS AND USE OF MEMORY

Figure 8 shows the results of the connection establishment time tests per-
formed on the live555 server, and the ones obtained by applying a different
number of concurrent connections using the Hermes tool. This tool can
establish two types of RTSP connections: using the VLC tool or OpenRTSP
tool, both of these cases running in silent mode.

Franco Arturo Urbano O., Gabriel E. Chanchí G., Wilmar Yesid Campo M.
Héctor Fabio Bermúdez O., Evelio Astaiza Hoyos

348 Ingeniería y Desarrollo. Universidad del Norte. Vol. 34 n.° 2: 333-353, 2016
ISSN: 0122-3461 (impreso)

2145-9371 (on line)

Figure 8. Connection Times vs Clients

According to Figure 9, when RTSP connections are established with the
Hermes tool (running VLC client in the background), the ratio of the number
of clients and the connection establishment time is directly proportional,
reaching a value of 1500 milliseconds from 0 to 60 clients, and 3000 milli-
seconds from 60 to 100 clients.

However, when establishing RTSP connections using the Hermes tool
(running OpenRTSP client in the background), the ratio of the number of
clients and the connection establishment time grows slower than when it is
done with VLC client. According to this graph, the connection time reaches
values of 250 milliseconds between 0 and 60 clients and 500 milliseconds
between 60 and 100 clients.

Furthermore, in Figure 9, the results of CPU usage rate and RAM (random-
access memory) consumption tests performed on the LIVE555 server are
presented. These tests were made by sending to the streaming server multiple
and simultaneous connections with the Hermes tool, which allows different
number of instances of the open source tools to run in the background:
VLC and OpenRTSP.

TESTING ENVIRONMENT FOR VIDEO STREAMING SUPPORT USING OPEN SOURCE TOOLS

349Ingeniería y Desarrollo. Universidad del Norte. Vol. 34 n.° 2: 333-353, 2016
ISSN: 0122-3461 (impreso)
2145-9371 (on line)

a – Percentage of RAM Usage b – Percentage of CPU usage

Figure 9. Test of memory usage

From the simultaneous connections generated with the Hermes tool, data
memory consumption and CPU usage percentage are obtained with the “ps
aux” command in Linux, From the simultaneous connections generated with
the Hermes tool, data memory consumption and CPU usage percentage are
obtained with the “ps aux” command in Linux, which provides a report
on the amount of RAM and the percentage CPU, which is being used by
each of the active processes of the operating system. This information was
filtered by the awk programming language (included in the Linux operating
system), giving specific live555 process consumption data.

In regard to Figure 9.a, the ratio between the number of clients (simulta-
neous) and the percentage of RAM used is directly proportional, varying
about 0.5% each time the number of clients connected to the sever increa-
ses by 20. Meanwhile, in Figure 9.b, the ratio between of the number of
clients (simultaneous) and CPU percentage usage is shown. As is shown
in this figure, the ratio is directly proportional, having a greater variation
of growth up to 40 clients (60% increase) and a more stable variation for
40 to 100 clients (20% increase).

CONCLUSIONS AND FUTURE WORK

The testing environment presented in this work integrates the most appro-
priate open source software in the world used to implement video streaming
services based on the RTSP protocol.

Franco Arturo Urbano O., Gabriel E. Chanchí G., Wilmar Yesid Campo M.
Héctor Fabio Bermúdez O., Evelio Astaiza Hoyos

350 Ingeniería y Desarrollo. Universidad del Norte. Vol. 34 n.° 2: 333-353, 2016
ISSN: 0122-3461 (impreso)

2145-9371 (on line)

The video streaming server LIVE555, proved to be a suitable software for
the transmission of video information for different devices with different
operating systems. Their mode of operation is based on the transport pro-
tocol RTSP, through which video content is transported over the network.
While using the FFmpeg open source software, it is possible to edit a video
in order to meet the transportation requirements desired, such as formats
and codecs. Furthermore, FFmpeg video files can be packaged in transport
streams, so that they can be played on different devices, such as tablets,
phones or computers.

The correct operation of the test environment with different operating
systems and different devices was demonstrated, using a single video
streaming server, allowing its extension to other scenarios. Thus, the
proposed framework seeks to provide guidance for projects requiring the
implementation of video streaming-based application environments with
different services, such as health and education sector.

From the connection establishment testing, it can be concluded that the ti-
mes obtained for simultaneous connections below 100 clients are acceptable
and allow proper reception of media content. The difference in behavior
between OpenRTSP and VLC is that the first is merely a tool to run from
console (silent mode), so it responds best to the RTSP connections.

According to the memory consumption and CPU usage tests, and considering
the trend set by 8a and 8b graphs, the percentage of CPU usage caused by
connections from over 100 clients to the live555 server can create processing
problems in the transmission of the media content, while causing difficulties
in the correct consumption of such by the clients.

The Hermes stress measurement tool, facilitates obtaining simultaneous
connection times for multiple clients on a RTSP streaming server. Moreover,
Hermes allows for secondary memory consumption measurements on the
server-side, facilitating the evaluation of the server’s performance when
faced with multiple and simultaneous RTSP connections.

The use of Python in the construction of the Hermes tool facilitates the
invocation of operating system commands (VLC and OpenRTSP), through
which it is possible to connect to the RTSP streaming server. Likewise,

TESTING ENVIRONMENT FOR VIDEO STREAMING SUPPORT USING OPEN SOURCE TOOLS

351Ingeniería y Desarrollo. Universidad del Norte. Vol. 34 n.° 2: 333-353, 2016
ISSN: 0122-3461 (impreso)
2145-9371 (on line)

the multithreaded support characteristics by the Python language allow
launching multiple RTSP connections, to evaluate the performance of the
streaming server.

Future work could consider, in the test environment, modules to control the
quality of multimedia transmission, according to the characteristics of the
network. It could also aim to develop traffic studies, which can help plan
a network’s transmission capacity, telematic video features and protocols
that support them. Additionally, future work could extend the operation
of the Hermes stress measurement tool, so that it can generate graphics
automatically, with response times provided by the server.

ACKNOWLEDGEMENTS

This work has been carried out under the project “Testbed for video strea-
ming service support of educational content at FUP”, developed at the
Fundación Universitaria de Popayán. This work has been supported by
the PhD program of National Colciencias, call 528 2011.

REFERENCES

[1]	 D. Wu, Y. T. Hou, W. Zhu, Y.-Q. Zhang and J. M. Peha, “Streaming video
over the Internet: approaches and directions,” IEEE Trans. CircuitsSyst. Video
Technol., vol. 11, no. 3, pp. 282-300, Mar. 2001.

[2]	 S. B. Barrio and J. Soto Vázquez, “Las posibilidades didácticas y manejo de
Video Streaming en las clases de lengua y literatura,” Tejuelo Didáctica Leng.
Lit., no. 4, pp. 84-100, Mar. 2009.

[3]	 Y. Liu, B. Du, S. Wang, H. Yang, and X. Wang, “Design and Implementation
of Performance Testing Utility for RTSP Streaming Media Server,”in 2010
1stInt. Conf. on Pervasive Computing Signal Processing and Applications (PC-
SPA), Harbin, China, 2010, pp. 193-196.DOI: 10.1109/PCSPA.2010.55.

[4]	 N. B. Yoma, J. Hood, and C. Busso, “A real-time protocol for the Internet
based on the least mean square algorithm,” IEEE Trans. Multimedia, vol. 6,
no. 1, pp. 174-184, Feb. 2004. DOI:10.1109/TMM.2003.819582.

[5] 	 D. Chu, C. Jiang, Z. Hao, y W. Jiang, «The Design and Implementation of
Video Surveillance System Based on H.264, SIP, RTP/RTCP and RTSP», en
2013 Sixth International Symposium on Computational Intelligence and De-
sign (ISCID), 2013, vol. 2, pp. 39-43

Franco Arturo Urbano O., Gabriel E. Chanchí G., Wilmar Yesid Campo M.
Héctor Fabio Bermúdez O., Evelio Astaiza Hoyos

352 Ingeniería y Desarrollo. Universidad del Norte. Vol. 34 n.° 2: 333-353, 2016
ISSN: 0122-3461 (impreso)

2145-9371 (on line)

[6]	 G. E. Chanchí Golondrino, F. A. Urbano Ordoñez, W. Y. Campo Muñoz,
“Stress tests for videostreaming services based on RTSP protocol,” Revis-
ta Tecnura, [S.l.], vol. 19, n. 46, pp. 27-36, nov. 2015. DOI: http://dx.doi.
org/10.14483/udistrital.jour.tecnura.2015.4.a02.

[7]	 X. Lei, X. Jiang, and C. Wang, “Design and implementation of streaming
media processing software based on RTMP,”in Image and Signal Processing
(CISP), 2012 5th Int. Congr.,Chongqing,Southwest China, 2012, pp. 192-196.
DOI: 10.1109/CISP.2012.6469981

[8]	 W. Y. Campo, J. L. Arciniegas, R. García, and D. Melendi, “Análisis de Trá-
fico para un Servicio de Vídeo bajo Demanda sobre Recles HFC usando el
Protocolo RTMP,”Inf. Tecnológica, vol. 21, no. 6, pp. 37-48,Jan. 2010.

[9] 	 X. Lei, X. Jiang, y C. Wang, «Design and implementation of streaming media
processing software based on RTMP», en 2012 5th International Congress
on Image and Signal Processing (CISP), 2012, pp. 192-196. DOI: 10.1109/
CISP.2012.6469981.

[10]	 W. Y. Campo, “Modelo de Tráfico para Servicios Interactivos de una Co-
munidad Académica Virtual, con Contenidos de Audio y Video de Alta
calidad,”Ph.D.dissertation, Facultad de Ingeniería Electrónica y Telecomu-
nicaciones. Univ. Of Cauca, Popayán, Colombia, 2014. DOI: 10.4067/S0718-
07642010000600006.

[11]	 A. Acosta, M. S. GarciaVazquez, and J. ColoresVargas, “MPEG-4 AVC/H.264
and VC-1 Codecs Comparison Usedin IPTV Video Streaming Technology,”in
Electronics, Robotics and Automotive Mechanics Conf. –CERMA08,Cuernavaca,
Morelos, México. 2008, pp. 122-126.DOI: 10.1109/CERMA.2008.93.

[12]	 S. Kim and Y. Yoon, “Video Customization System Using MPEG
Standards,”in Inter. Conf. on Multimedia and Ubiquitous Engineering -MUE
2008, Busan, Korea, 2008, pp. 475-480.DOI: 10.1109/MUE.2008.34.

[13]	 T.C. Lin, C.W. Chen, C.C. Lin, and T.-K. Truong, “Very Low Bit Rate Vid-
eo Coding Using H.264 Codec and Cubic Spline Interpolation,”in 3rd Int.
Conf. on Intelligent Information Hiding and Multimedia Signal Processing (II-
HMSP 2007),Kaohsiung. Taiwan, 2007, vol. 1, pp. 11-14.DOI: 10.1109/IIH-
MSP.2007.322.

[14]	 H. Zhang, G. Jiang, K. Yoshihira, H. Chen, and A. Saxena, “Resilient Work-
load Manager: Taming Bursty Workload of Scaling Internet Applications,”
in Proc. of the 6th Int. Conf. on Autonomic Computing, New York, NY, USA,
2009, pp. 45–46.DOI: 10.1109/TCAD.2014.2316094.

[15]	 Z. Hao, C. Guang-Li, and C. Hua-Xiang, “Performance Improvement of
DSS Based on High-Definition Video on Demand,”in 2012 Int. Conf. on Com-

http://dx.doi.org/10.14483/udistrital.jour.tecnura.2015.4.a02
http://dx.doi.org/10.14483/udistrital.jour.tecnura.2015.4.a02

TESTING ENVIRONMENT FOR VIDEO STREAMING SUPPORT USING OPEN SOURCE TOOLS

353Ingeniería y Desarrollo. Universidad del Norte. Vol. 34 n.° 2: 333-353, 2016
ISSN: 0122-3461 (impreso)
2145-9371 (on line)

puter Science Service System (CSSS),Nanjing, China, 2012, pp. 761-764.DOI:
10.1109/CSSS.2012.195.

[16]	 E. Catalán, “Implementación de un servidor de streaming de Vídeo
adaptativo,”M.S. thesis, Universidad Politécnica de Cataluña, Cataluña,
2009.

[17]	 L. Wang and C. Meinel, “Mining the Students’ Learning Interest in Brows-
ing Web-Streaming Lectures”, in Computational Intelligence and Data Min-
ing, 2007 - CIDM 2007. IEEE Symp., Honolulu, HI, 2007, pp. 194-201.DOI:
10.1109/CIDM.2007.368872.

[18]	 K. De Vogeleer, A. Popescu, M. Fiedler, and D. Erman, “Content dependen-
cy of the traffic control in the darwin streaming server,” in Next Generation
Internet (NGI), 2012 8th EURO-NGI Conf.,Karlskrona, Suecia, 2012, pp. 65-70.
DOI: 10.1109/NGI.2012.6252166.

[19]	 N. Vunand M. Ansary, “Implementation of an embedded H.264 live video
streaming system,”inConsumer Electronics (ISCE), 2010 IEEE 14th Int. Symp.,
Braunschweig, Germany, 2010, pp. 1-4.DOI: 10.1109/ISCE.2010.5523699.

[20]	 P. V. Phuoc, S.T. Chung, H. Kang, S. Cho, K. Lee, and T. Seol, “Design
and implementation of versatile live multimedia streaming for IP net-
work camera,”in 2013 Inter. Conf. on Advanced Technologies for Communica-
tions (ATC), Hochiminh City, Vietnam, 2013, pp. 525-530.DOI: 10.1109/
ATC.2013.6698171.

[21]	 J. Bailey, “Live Video Streaming from Android-Enabled Devices to Web
Browsers”, M.S. thesis, Department of Computer Science and Engineering,
College of Engineering, University of South Florida, 2011.

[22]	 S. Jin, H. Li, and Y. Liu, “Research on media player based on Android,”in
9th Inter. Conf. on Fuzzy Systems and Knowledge Discovery (FSKD), Chongqing,
Sichuan, China, 2012, pp. 2326-2329.DOI: 10.1109/FSKD.2012.6234021.

[23]	 M. Terbuc, “Use of Free/Open Source Software in e-education,”in Power
Electronics and Motion Control Conf. IPEMC 2006. CES/IEEE 5th Int. Shanghai,
Chinese, 2006, pp. 1737-1742.DOI: 10.1109/EPEPEMC.2006.4778656.

