

Ingeniería y Desarrollo

ISSN: 0122-3461

ingydes@uninorte.edu.co

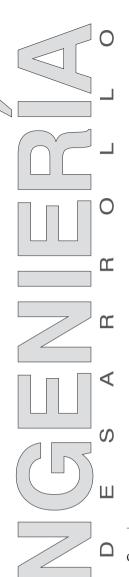
Universidad del Norte

Colombia

Pinedo Hernández, José; Marrugo Madrid, Siday; Enamorado Montes, Germán; Urango Cárdenas, Iván; Marrugo Negrete, José
Optimización del pH y la concentración de TiO2 para la remoción de mercurio en un sistema fotocatalítico de recirculación iluminado con lámparas UV
Ingeniería y Desarrollo, vol. 35, núm. 2, julio-diciembre, 2017, pp. 305-319
Universidad del Norte
Barranquilla, Colombia

Disponible en: http://www.redalyc.org/articulo.oa?id=85252030003

Número completo


Más información del artículo

Página de la revista en redalyc.org

Sistema de Información Científica

Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto

ARTÍCULO DE INVESTIGACIÓN / RESEARCH ARTICLE

Optimización del pH y la concentración de TiO₂ para la remoción de mercurio en un sistema fotocatalítico de recirculación iluminado con lámparas UV

Optimization of pH and TiO₂ levels on the mercury removal in a photocatalytic recirculation system with UV-Lamp irradiation

José Pinedo Hernández*
Siday Marrugo Madrid**
Germán Enamorado Montes***
Iván Urango Cárdenas****
José Marrugo Negrete***** *Universidad de Córdoba*

Correspondencia: José Pinedo Hernández. Carrera 6 No. 76-103, Montería, Córdoba, Colombia. Tel. +57 3145311382. José Marrugo Negrete. Carrera 6 N° 76-103, Montería, Córdoba. Tel. +573002101908.

Origen de subvenciones: el proyecto "Acople de fotocatálisis heterogénea y humedales construidos para el tratamiento de contaminantes generados en dos actividades productivas en el departamento de Córdoba" financiado por Colciencias y la Universidad de Córdoba, en el marco del convenio No. 549-2012.

Volumen 35, n.º 2 Julio-diciembre, 2017 ISSN: 0122-3461 (impreso) 2145-9371 (on line)

^{*} MSc. Profesor Auxiliar, Universidad de Córdoba. Grupo de Aguas, Química Aplicada y Ambiental. josejph@hotmail.com

^{**} MSc. Profesor Auxiliar, Universidad de Córdoba. Grupo de Aguas, Química Aplicada y Ambiental. yesdayma3@yahoo.es

^{***} MSc. Universidad de Córdoba. Grupo de Aguas, Química Aplicada y Ambiental. genamoradomontes@correo.unicordoba.edu.co

^{****} MSc. Profesor Auxiliar, Universidad de Córdoba. Grupo de Aguas, Química Aplicada y Ambiental. ivaild@hotmail.com

^{****} Ph.D. Profesor Titular, Universidad de Córdoba. Grupo de Aguas, Química Aplicada y Ambiental. *jlmarrugon@hotmail.com*

Resumen

En la actualidad, la degradación progresiva del recurso hídrico, generada por actividades antrópicas como la minería y la agricultura, constituve uno de los principales problemas ambientales que enfrenta la humanidad. El propósito de este estudio fue evaluar la eficiencia del proceso de fotocatálisis heterogénea con dióxido de titanio (TiO₂) y promovido por luz ultravioleta (UV) artificial, en la remoción de mercurio (Hg) presente en efluentes mineros (EM). Para la optimización de las condiciones del proceso de fotocatálisis, se utilizó la metodología de superficie de respuesta. Se valoraron los efectos del pH y concentración de TiO₂ sobre la eficiencia de remoción de mercurio. El modelo encontrado y expresado a través de una ecuación de segundo orden explica en un 77,87% la variabilidad de los resultados. La máxima eficiencia de remoción (98,53%) predicha por el modelo, se obtuvo para un pH de 6,98 y una concentración de TiO, de 0,51 g/L. La cinética de reacción bajo las condiciones óptimas de operación fue de pseudo segundo orden, siguiendo el modelo cinético de Langmuir-Hinshelwood (L-H).

Palabras clave: cinética de remoción, fotocatálisis heterogénea, mercurio, superficie de respuesta, tratamiento efluentes mineros.

Abstract

Progressive degradation of water resources, generated by human activities such as mining and agriculture, represents one of the main environmental issues that humanity faces. The goal of this study was to evaluate the efficiency of the heterogeneous photocatalysis process, TiO₂-catalyzed under artificial UV irradiation, in the mercury removal from mining effluents. To optimize photocatalytic process conditions, the response surface methodology was used, effects of pH and TiO₂ concentration over mercury removal efficiency were evaluated. The model found and expressed through a second-order equation explains in a 77,87% variability of results. The prediction of the model showed a maximum removal efficiency of 98,53% obtained for a pH of 6,98 and a concentration of TiO₂ of 0,51 g/L. Langmuir-Hinshelwood pseudo second order kinetic model was achieved under the optimal conditions.

Keywords: heterogeneous photocatalysis, removal kinetics, mercury, response surface methodology, mining effluent treatment.

I. INTRODUCCIÓN

La explotación de minas suele orientarse a la extracción de metales y minerales mediante procesos que están asociados al uso de sustancias químicas con liberación de sus residuos al ambiente. Uno de los elementos químicos más ampliamente relacionado con las actividades mineras es el mercurio, cuya presencia resulta nociva y altamente tóxica cuando supera límites permisibles, generando efectos en los diferentes compartimentos ambientales así como a la salud humana. La falta de control en las actividades productivas que generan estas sustancias puede ocasionar un grave deterioro ambiental [1]-[3]. Entre las distintas especies químicas del mercurio, la forma Hg²+ se considera un contaminante prioritario a controlar debido a su toxicidad neurológica, volatilización, persistencia y bioacumulación a través de la cadena trófica que le convierte en un problema de salud humana y de seguridad alimentaria [4].

Uno de los compartimentos ambientales más afectados en áreas de producción minera es el agua, especialmente cuando las fuentes hídricas son utilizadas para el consumo humano, por lo cual se plantea una necesidad por técnicas efectivas, accesibles y amigables con el ambiente, que reúnan requisitos como la simplicidad, la eficacia, el bajo costo y que sean socialmente aceptables, para la desinfección, degradación y/o remoción de contaminantes [5]-[8].

Se han probado diferentes técnicas para la remoción de Hg(II) en solución acuosa: 1) la adsorción del metal en la superficie de un adsorbente como el carbón activado; 2) empleando otro tipo de bioabsorbentes como hongos y residuos vegetales; o 3) la adsorción en la superficie de catalizadores después de un proceso de fotoreducción [9]. La fotocatálisis heterogénea es una de las tecnologías más relevantes para la eliminación de contaminantes tóxicos presentes en aguas contaminadas y consiste en la absorción directa o indirecta por un sólido semiconductor de fotones de luz, visible o UV, que al ser activado por la absorción de la luz, acelera el proceso e interacciona con la sustancia contaminante y genera reacciones de óxido-reducción, que provocan su degradación y mineralización [10]-[12]. En el proceso fotocatalítico variables como el pH, la cantidad de catalizador [13], las características del catalizador, la temperatura, la intensidad de la radiación, el diseño del reactor, el uso de aditivos y la naturaleza y concentración del contaminante

pueden afectar la eficiencia [14]. Para optimizar estas condiciones de operación se pueden emplear herramientas estadísticas como la metodología de superficie de respuesta (MSR) [15], [16]. El objetivo de este trabajo fue evaluar la remoción de mercurio mediante fotocatálisis heterogénea en efluentes mineros a diferentes condiciones de pH y concentración de TiO₂, y optimizar las condiciones de máxima eficiencia de remoción aplicando MSR.

II. METODOLOGÍA

A. Recolección de muestras

Las muestras de agua residuales, objeto de este estudio, se tomaron del efluente de una explotación aurífera en el departamento de Córdoba, noroeste de Colombia, en cantidades suficientes para todas las corridas experimentales. El muestreo se realizó según los métodos estándar para aguas residuales [17], en recipientes plásticos previamente acondicionados, y refrigerados, para su transporte hasta el laboratorio.

B. Diseño experimental

El diseño experimental constó de dos factores, concentración de TiO₂ y pH, con tres niveles cada uno (pH: 5,0, EM y 8,0; TiO₂: 0,2, 0,4 y 0,6 g/L), y tres réplicas, para un total de 9 combinaciones y 27 respuestas, lo que originó un diseño completamente al azar con estructura factorial 3². La variable de respuesta fue el porcentaje de remoción de Hg, evaluado de acuerdo con la ecuación 1. El pH del efluente minero (EM) en promedio fue 6,9 (6,89-6,91).

$$\%Remoción = \frac{C_i - C_f}{C_i} \times 100 \tag{1}$$

Donde:

 $C_{\rm f}$ = concentración final de Hg

 C_i = Concentración inicial de Hg

C. Optimización del proceso fotocatalítico

El efecto del pH y la concentración ${\rm TiO_2}$ se analizó de acuerdo con el diseño completamente al azar con estructura factorial 3^2 , determinándose los efectos simples y combinados de las variables de operación sobre la eficiencia de remoción de mercurio. Al aplicar el analisis estadístico de superficie de respuesta, los datos experimentales se ajustaron a un modelo de regresión de segundo orden de acuerdo con la ecuación 2.

$$y = b_0 + b_1 X_1 + b_2 X_2 + b_{11} X_1^2 + b_{12} X_1 X_2 + b_{22} X_2^2$$
 (2)

Donde:

y es variable de respuesta de la eficiencia de remoción

 b_0 es una constante

b₁ y b₂ son los coeficientes de regresión de los efectos lineales

 b_{11} y b_{22} son los coeficientes de segundo grado

 b_{12} es el coeficiente de interacción

D. Sistema fotocatalítico

La Fig. 1 muestra el reactor fotocatalítico empleado para el tratamiento del efluente minero. El sistema constó de dos tubos de borosilicato de 74 cm de largo y 3 cm de diámetro, interconectados con uniones PVC (volumen sistema: 1,2L); abastecido por un recipiente de 20L de capacidad, provisto con una bomba sumergible para la recirculación (19,2 L/s). Tres lámparas de radiación UV (20W) marca opalux YZ20 RR25 fueron ubicadas en la parte superior de una celda de geometría rectangular de 75x20x25 cm (largo, ancho y alto), provista con una película interna de aluminio que actúa como superficie reflectante permitiendo que la radiación sea reflejada en todos los sentidos del fotoreactor tubular.

Figura 1. Esquema del sistema fotocatalítico de recirculación iluminado con lámparas UV.

El volumen de trabajo fue de $20\,L$. La concentración de mercurio total (HgT) en el efluente minero fue $0.11\pm0.03\,$ mg/L. Sin embargo, con la finalidad de simular diferentes escenarios de contaminación en Colombia [18], el contenido de mercurio se ajustó a $3.0\,$ mg/L. Con el fin de alcanzar un equilibrio de adsorción en la superficie de la matriz, la mezcla (catalizador más efluente minero) se agitó durante $15\,$ minutos bajo oscuridad antes de iniciar el proceso fotocatalítico. El pH de la solución se ajustó con hidróxido de sodio o ácido acético, según lo requerido por el diseño experimental. Una vez acondicionada la mezcla, se inició el proceso de fotocatálisis con una duración de $180\,$ minutos.

E. Cinética de reacción

Para evaluar el efecto de la velocidad de reacción, se tomaron muestras a los 0, 15, 30, 60, 120 y 180 minutos. Se empleó el modelo de Langmuir-Hinshelwood (L-H) mediante la ecuación 3 para describir la cinética del proceso fotocatalítico. Esta ecuación modela originalmente un mecanismo de reacción en el que participan un pre-equilibrio de adsorción y una reacción superficial lenta.

$$q_e = -\frac{dc}{dt} = \frac{q_m \cdot k_l \cdot C_e}{k_l \cdot C_e + 1}$$
 (3)

Donde:

 K_l representa la constante de equilibrio de adsorción del sustrato en la superficie del catalizador.

 q_m es la constante cinética de la reacción para las condiciones experimentales.

*C*_e la concentración de Hg.

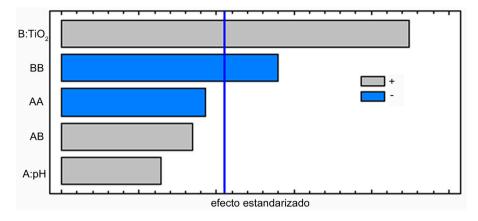
La ecuación 3 se puede escribir de la forma y= mx + b, como en la ecuación 4, para poder ajustar los datos experimentales y hallar las respectivas constantes a partir de la gráfica $-\frac{dc}{dt}vs\frac{1}{C}$.

F. Análisis de mercurio total (HgT)

Una vez tomada la muestra, esta se dejó decantar por 30 minutos y se determinó la concentración de HgT en el decantado mediante espectroscopía de absorción atómica de vapor frío (CVAAS), utilizando un espectrómetro Thermo Scientific iCE 3000-Series, después de una digestión previa con solución de KMnO₄-K₂S₂O₈ por 2 horas a 95°C y reducción a Hg⁰ con una solución de SnCl₂, según el método EPA 245.1 [19]. El control de calidad del método fue evaluado por análisis por triplicado de material de referencia certificado "Natural water-Mercury" (NIST-1641d, T-Hg 1,557 \pm 0,020 µg/mL), con lo cual se obtuvo un porcentaje de recuperación del 97%. El límite de detección del método para HgT fue de 0,14 µg/L, calculado como la media más tres veces la desviación estándar [20].

G. Análisis estadístico

Los resultados de los análisis son presentados como la media (X) ± la desviación estándar (S) de las determinaciones por triplicado. Se realizó análisis de superficie de respuesta y ANOVA en base al diseño experimental, y se estimó el error experimental y la prueba de ajuste del modelo. Se aplicó prueba de rangos múltiples de Tukey para los diferentes porcentajes de recuperación calculados. El criterio de significancia establecido fue p<0.05 para todos los análisis estadísticos. El tratamiento de los resultados fue realizado mediante el paquete estadístico Statgraphics Centurion XV.II Software.


III. RESULTADOS Y DISCUSIÓN

En la tabla 1 se indican los valores de los coeficientes de regresión estimados para la ecuación 2, los cuales permiten identificar las variables significativas y aislar los efectos de aquellas variables interferentes. Al aplicar la MSR, se generó un modelo de regresión de segundo orden en función de los factores pH y concentración de TiO₂.

Variable	Coeficiente	Estimado
Constante	$\boldsymbol{b}_{\scriptscriptstyle{0}}$	-11,1523
A:pH	b ₁	24,5015
B:TiO ₂	b ₂	95,1687
AA	b ₁₁	-2,06389
AB	b ₁ b ₂	8,53095
BB	b ₂₂	-152,569

Tabla 1. Coeficientes de regresión estimados

El factor lineal (b_2) y factor cuadrático (b_{22}) resultaron ser significativos (p<0.05, tabla 2). La concentración de TiO₂ y su factor cuadrático son los factores influyentes en el proceso de fotocatálisis heterogénea. El análisis de los factores en función del diagrama de pareto se muestra en la Fig. 2, donde el factor que más influye corresponde a la concentración de TiO₂, ya que esta resulta ser directamente proporcional, a diferencia del factor cuadrático TiO₂-TiO₂ que es inversamente proporcional. Lo anterior se debe –posiblemente– a que una proporción mayor de TiO₂ representa mayor superficie de contacto entre el catalizador y el Hg, lo cual permitirá una adecuada adsorción, generando así la cantidad requerida de pares electrónhueco necesarios para que se presenten los procesos de óxido-reducción a una velocidad de reacción razonable. Sin embargo, se debe tener en cuenta que a concentraciones muy altas se aumenta la turbidez, debido a la presencia de mayor cantidad de partículas del catalizador, lo que dificulta la difusión de la radiación ultravioleta [14], [21], [22].

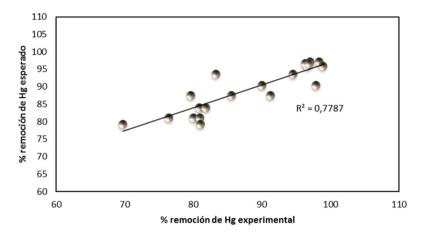


Figura 2. Diagrama de pareto estandarizado para remoción de HgT. (+) indica proporcionalidad directa con la variable de respuesta; (-) indica proporcionalidad inversa con la variable de respuesta. Los valores que sobrepasan la línea vertical son considerados significativos.

Tabla 2. Análisis de varianza para eficiencia de remoción de Hg. R² = 0,7787

Fuente	Suma de Cuadrados	GI	Cuadrado Medio	Razón-F	Valor-P
A:pH	47,5312	1	47,5312	1,66	0,2141
B:TiO ₂	577,155	1	577,155	20,14	<0,0003
AA	98,5802	1	98,5802	3,44	0,0801
AB	81,5104	1	81,5104	2,84	0,1089
BB	223,463	1	223,463	7,8	<0,0120
Falta de ajuste	134,412	3	44,804	1,56	0,2328
Error puro	515,76	18	28,6533		
Total (corregido)	1.780,9	26			

Se recomienda por literatura que el coeficiente de determinación (R²) sea de al menos 75% para considerar la posibilidad de continuar la metodología [23], [24]. Se encontró una correlación altamente significativa (R²=0,7787, n=27) para el modelo de regresión de segundo orden, a partir de los datos experimentales, indicando que el 77,87% de las variaciones de eficiencia de remoción de Hg se explican por las variables independientes y que el 22,13% de la variación no se logra explicar por el modelo. Una representación gráfica de los resultados experimentales para la remoción de Hg versus las remociones predichas por el modelo empleado, se pueden ver en la Fig. 3.

Figura 3. Porcentaje de remoción de mercurio, experimental y esperado, de acuerdo con el modelo regresión de segundo orden.

El modelo genera los valores óptimos para la eficiencia máxima de remoción de Hg en función del pHy la concentración de ${\rm TiO_2}$ (Tabla 3). Al comparar un punto cercano al máximo de respuesta no se observa diferencia significativa (p<0.05), lo que confirma que la MSR puede ser utilizada para optimizar los parámetros del proceso.

Tabla 3. Valores óptimos para la máxima eficiencia de remoción de Hg

Factor	Valor óptimo	Valor experimental
Remoción Hg (%)	98,53	97,64
рН	6,98	7,0
TiO ₂ (g/L)	0,51	0,51

La Fig. 4a muestra un gráfico tridimensional de superficie de respuesta que permite visualizar cómo se relaciona el porcentaje de remoción de Hg con las variables evaluadas, pH y concentración de ${\rm TiO_2}$. Se observa que a medida que aumenta la concentración de ${\rm TiO_2}$ se maximiza el porcentaje de remoción para pH cercanos a 7,0, obteniéndose registros entre el 95% y 99%. Estos resultados son consistentes con los reportados por Botta et al. [22] para experimentos realizados con diferentes sales de ${\rm Hg_2}$ + en donde la remoción de sal de cloruro se ve favorecida a un pH de 7 mientras que para las de nitrato y perclorato ocurre a un pH de 11. Sin embargo, contrastan con

los reportados por López-Muñoz et al. [25] quienes encuentran las mejores condiciones de remoción para un pH de 11 usando metanol como aditivo de sacrificio en ausencia de oxígeno. Las diferencias entre ambas conclusiones pueden deberse a los distintos tipos de reactores y de variables empleadas por los investigadores. La Fig. 4b muestra el gráfico de contorno en el cual se pueden observar varias franjas de colores, cada una correspondiente a las combinaciones de las variables de estudio, para las cuales la remoción media esperada se encuentra en un determinado rango. Se observa que la franja indicada con la letra R contiene las combinaciones de las variables de interés que pueden estimar remociones superiores a 97%. Cada gráfica fue realizada de acuerdo con la ecuación 2, la cual permitió visualizar el comportamiento de la variable de respuesta y señalar claramente la combinación de niveles de los factores estudiados que conllevan a un máximo de remoción.

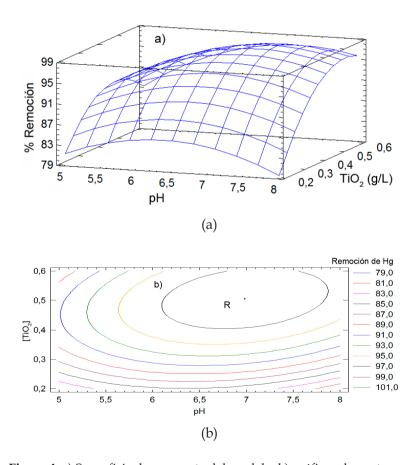
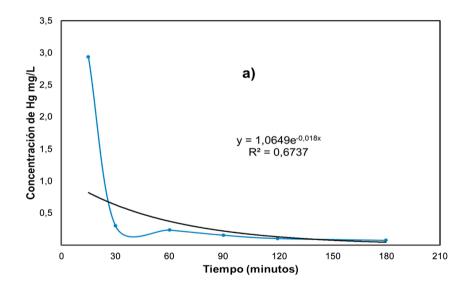
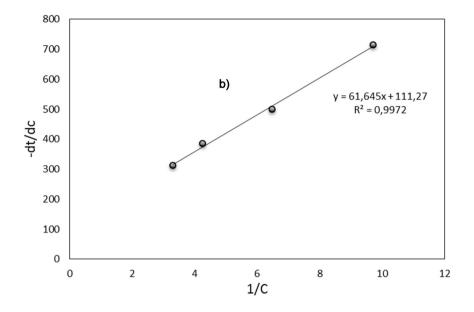




Figura 4. a) Superficie de respuesta del modelo; b) gráficos de contorno.

A. Cinética de reacción

Para el efecto de la cinética de reacción se tuvieron en cuenta las condiciones óptimas de operación mostradas en la Tabla 3. El porcentaje de remoción de Hg con respecto al tiempo mostró un comportamiento exponencial (Fig. 5a) con un R² de 0,6737, lo cual demuestra un buen ajuste al modelo de pseudo segundo orden. Los datos obtenidos experimentalmente exponen una correlación alta, con un valor de 0,9972 (Fig. 5b), lo cual indica que este modelo asegura confiabilidad en las constantes de velocidad y adsorción. El valor de K obtenido a partir del modelo fue de 1,4579x10-4 mg/L y de 1,622x10-2 mg/g para q_m respectivamente. Se infiere que a medida que transcurre el tiempo de operación, los sitios disponibles del catalizador van disminuyendo, lo que convierte las buenas características de adsorción en una desventaja en términos de velocidad y porcentaje de remoción final, debido a que este fenómeno es el que controla el proceso.

Figura 5. a) Variación de la concentración de Hg en el tiempo; b) modelo Langmuir-Hinshelwood para fotocatálisis heterogénea.

IV. CONCLUSIONES

El proceso de fotocatálisis heterogénea utilizando ${\rm TiO_2}$ como catalizador y radiación UV artificial es una alternativa técnicamente viable para el tratamiento de aguas contaminadas con mercurio. La MSR permitió establecer condiciones óptimas de operación para encontrar una máxima respuesta en función del porcentaje de remoción de mercurio (98,53%) y las variables de estudio (pH = 6,98 y ${\rm TiO_2}$ = 0,51). La cinética de remoción para el proceso fotocatalítico siguió un modelo cinético de pseudo segundo orden y se ajustó satisfactoriamente al modelo L-H. Esto fue reflejado por una excelente correlación obtenida de 0,9972.

REFERENCIAS

[1] CINEP/PPP, "Minería, conflictos sociales y violación a los derechos humanos en Colombia," Centro de Investigación y Educación Popular - Programa por la Paz, Bogotá, Colombia. 2012.

- [2] L. Guiza, "Small scale mining in Colombia: not such a small activity", *Dyna-Colombia*, vol. 80, pp. 109-117, 2013.
- [3] P. C. Ogbonna, E. C. Nzegbule, P. E. Okorie, "Environmental impact assessment of coal mining at Enugu, Nigeria", *Impact Assessment and Project Appraisal*, vol. 33, pp. 73-79, 2014. doi: 10.1080/14615517.2014.941711
- [4] P. Miretzky, A. Cirelli, "Hg(II) removal from water by chitosan and chitosan derivatives: A review", *Journal of Hazardous Materials*, vol. 167, pp. 10-23, 2009. doi: 10.1016/j.jhazmat.2009.01.060
- [5] S. Apollo, M. Onyango, A. Ochieng, "An integrated anaerobic digestion and UV photocatalytic treatment of distillery wastewater", *Journal of Hazardous Materials*, vol. 261, pp. 435-442, 2013. doi: 10.1016/j.jhazmat.2013.06.058
- [6] K. Backhaus, J. Marugan, R. van Grieken, C. Sordo, "Photocatalytic inactivation of E. faecalis in secondary wastewater plant effluents", Water Science and Technology, vol. 61, pp. 2355-2361, 2010. doi: 10.2166/wst.2010.056
- [7] J. Liu, X. Liu, J. Li, L. Pan, Z. Sun, "Enhanced visible light photocatalytic degradation of methyl orange by Bi2O3/F-TiO₂ composites", *Rsc Advances*, vol. 4, pp. 38594-38598, 2014. doi: 10.1039/c4ra05389c
- [8] Q. Sun, H. Li, S. Zheng, Z. Sun, "Characterizations of nano-TiO₂/diatomite composites and their photocatalytic reduction of aqueous Cr (VI)", Applied Surface Science, vol. 311, pp. 369-376, 2014. doi: 10.1016/j.apsusc.2014.05.070
- [9] A. Sharma, R. Arya, "Removal of mercury(II) from aqueous solution: A review of recent work", Separation Science and Technology, vol. 50, pp. 1310-1320, 2015. doi: 10.1080/01496395.2014.968261
- [10] C. Guarín, A. Mera, "Fotocatálisis heterogénea con TiO₂ para el tratamiento de desechos líquidos con presencia del indicador verde de bromocresol", Revista Ingenierías Universidad de Medellín, vol. 10, pp. 79-88, 2011.
- [11] M. Visa, A. Duta, "TiO₂/fly ash novel substrate for simultaneous removal of heavy metals and surfactants", *Chemical Engineering Journal*, vol. 223, pp. 860-868, 2013. doi: 10.1016/j.cej.2013.03.062
- [12] D. Wang, Y. Li, G. Li Puma, C. Wang, P. Wang, W. Zhang, et al., "Mechanism and experimental study on the photocatalytic performance of Ag/AgCl @ chiral TiO₂ nanofibers photocatalyst: The impact of wastewater components", *Journal of Hazardous Materials*, vol. 285, pp. 277-284, 2015. doi: 10.1016/j. jhazmat.2014.10.060
- [13] F. Machuca-Martínez, J. Colina-Márquez, "Effect of the initial pH and the catalyst concentration on TiO₂-based photocatalytic degradation of three commercial pesticides", *Ingeniería & Desarrollo*, vol. 29, pp. 84-100, 2011

- [14] M. Blesa, *Eliminación de contaminantes por fotocatálisis heterogénea*, Comisión Nacional de Energía Atómica. Buenos Aires, Argentina, 2001.
- [15] J. Zhang, D. Fu, Y. Xu, C. Liu, "Optimization of parameters on photocatalytic degradation of chloramphenicol using TiO₂ as photocatalyist by response surface methodology", *Journal of Environmental Sciences-China*, vol. 22, pp. 1281-1289, 2010. doi: 10.1016/S1001-0742(09)60251-5
- [16] J. J. Marrugo-Negrete, J. J. Pinedo-Hernández, J. A. Baeza-Reyes, "Optimization of the electrodeposition conditions for mercury removal from vegetal biomass with response surface methodology", *Portugaliae Electrochimica Acta*, vol. 31, pp. 107-117, 2013.
- [17] APHA-AWWA-WEF. Standard Methods for the Examination of Water and Wastewater. 21st ed. Maryland (USA): Port City Press, 2005.
- [18] MINMINAS y UPME. Estudio de la cadena del mercurio en Colombia con énfasis en la actividad minera de oro, Tomo I. Bogotá D.C., 2014.
- [19] USEPA. Determination of mercury in water by cold vapor atomic absorption spectrometry. METHOD 245.1. Revision 3.0, 2007.
- [20] A. Buccolieri, G. Buccolieri, N. Cardellicchio, A. Dell'Atti, A. Di Leo, A. Maci, "Heavy metals in marine sediments of Taranto Gulf (Ionian Sea, Southern Italy)", *Marine Chemistry*, vol. 99, pp. 227-235, 2006. doi: 10.1016/j. marchem.2005.09.009
- [21] S. Malato, P. Fernández-Ibanez, M. Maldonado, J. Blanco, W. Gernjak, "Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends", *Catalysis Today*, vol. 147, pp. 1-59, 2009. doi: 10.1016/j. cattod.2009.06.018
- [22] S. Botta, D. Rodriguez, A. Leyva, M. Litter, "Features of the transformation of Hg(II) by heterogeneous photocatalysis over TiO(2)", *Catalysis Today*, vol. 76, pp. 247-258, 2002. doi: 10.1016/S0920-5861(02)00223-7
- [23] D. C. Montgomery, *Design and Analysis of Experiments*, Fifth Edition. New York, NY: John Wiley & Sons, 2000.
- [24] W. W. Hines, D. C. Montgomery, *Probability and Statistics in Engineering and Management Science*, Third ed. New York, NY: John Wiley & Sons, 1990.
- [25] M. López-Munoz, J. Aguado, A. Arencibia, R. Pascual, "Mercury removal from aqueous solutions of HgCl₂ by heterogeneous photocatalysis with TiO₂", *Applied Catalysis B-Environmental*, vol. 104, pp. 220-228, 2011. doi: 10.1016/j.apcatb.2011.03.029