Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas

ISSN: 0717-7917

editor.blacpma@usach.cl

Universidad de Santiago de Chile Chile

VALDERRAMA, Jaime A; IBACACHE, Juana Andrea; THEODULOZ, Cristina Synthesis and antiproliferative evaluation of new isomeric ellipticine quinones Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, vol. 13, núm. 6, 2014, pp. 566-574

Universidad de Santiago de Chile Santiago, Chile

Available in: http://www.redalyc.org/articulo.oa?id=85632545007

Complete issue

More information about this article

Journal's homepage in redalyc.org

Scientific Information System

Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Non-profit academic project, developed under the open access initiative

© 2014

Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 13 (6): 566 - 574 ISSN 0717 7917

www.blacpma.usach.cl

Artículo Original | Original Article

Synthesis and antiproliferative evaluation of new isomeric ellipticine quinones

[Síntesis y evaluación de la actividad antiproliferativa de nuevas elipticinquinonas isomericas]

Jaime A VALDERRAMA^{1,2}, Juana Andrea IBACACHE³ & Cristina THEODULOZ⁴

¹Facultad de Ciencias de la Salud, Universidad Arturo Prat. Iquique, Chile
²Instituto de Ciencias Exactas y Naturales (ICEN), Universidad Arturo Prat. Iquique, Chile
³Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
⁴Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile
Contactos / Contacts: Juana Andrea IBACACHE - E-mail address: juana.ibacache.r@usach.cl
Contactos / Contacts: Jaime A VALDERRAMA - E-mail address: jvalderr@uc.cl

Abstract: The synthesis of new isomeric ellipticine quinones 3a-c and their *in vitro* antiproliferative activities on cancer cell lines is reported. The designed N-heterocyclic quinones 3a-c were synthesized through a three step sequence which involves: a) one-pot preparation of 4-methoxycarbonyl-3,4-dimethylisoquinoline-5,8-quinone 1 from 2,5-dihydroxyacetophenone, methyl aminocrotonate and silver (II) oxide; b) regioselective amination of 1 with arylamines to give aminoquinones 2a-c and c) palladium-catalyzed intramolecular oxidative coupling of 7-aminoisoquinoline-5,8-quinones 2a-c. The *in vitro* antiproliferative activity of the new angular quinones was evaluated againts one normal cell line (lung fibroblasts) and gastric, lung and bladder cancer cell lines in 72-h drug exposure assays. The new compounds displayed similar or higher antiproliferative activity with respect to their quinone precursors 2a-c. The isomeric ellipticine quinone 2b appears as the more active member on bladder cancer cell line (IC $_{50}$: $2.4 \mu M$), comparable to etoposide used as anticancer reference drug.

Keywords: Ellipticine; quinones; oxidative coupling; antiproliferative activity

Resumen: Se describe la síntesis de las nuevas quinonas 3a-c, isoméricas de elipticina, y sus actividades antiproliferativas *in vitro* en líneas de células de cáncer. Las quinonas *N*-heterocíclicas 3a-c se sintetizaron a través de una secuencia que involucra: a) preparación de 4-metoxicarbonil-3,4-dimetlisoquinolin-5,8-quinone 1 a partir de 2,5-dihidroxiacetofenona, aminocrotonato de metilo y óxido de plata (I); b) aminación regioselectiva de 1 con arilaminas para producir las aminoquinonas 2a-c y c) acoplamiento oxidante intramolecular de 7-aminoisoquinolin-5,8-quinonas 2a-c catalizado con paladio. La actividad antiproliferative *in vitro* de los nuevos compuestos fue evaluada en una línea celular normal (fibroblastos de pulmón) y líneas de células de cáncer gástrico, pulmón y vejiga en ensayos de exposición de 72 horas a la droga. Las quinonas 3a-c exhiben interesantes propiedades antiproliferativas destacando la elipticinquinona isomérica 2b en células de cáncer de vejiga (IC50: 2.4 μM) comparado con etopósido usada como droga anticancer de referencia. Los nuevos compuestos mostraron actividades antiproliferativa similar o mayor respecto de las correspondientes quinonas precursoras 2a-c. La elipticin quinona isomérica 2b corresponde al miembro más activo en células de câncer de vejiga (IC₅₀: 2.4 μM), comparable a la del etopósido, usada como droga anticáncer de referencia.

Palabras clave: Elipticina; quinonas; acoplamiento oxidante; actividad antiproliferativa.

Recibido | Received: October 22, 2014

Aceptado en versión corregida | Accepted in revised form: October 28; 2014

Publicado en línea | Published online: November 30, 2014

Declaración de intereses | Declaration of interests: We thank to Fondo Nacional de Ciencia y Tecnología (Grant N° 1060591) for financial support to this study.

Este artículo puede ser citado como / This article must be cited as: JA Valderrama, JA Ibacache, C Theodoluz. 2014. Synthesis and antiproliferative evaluation of new isomeric ellipticine quinones. Bol Latinoam Caribe Plant Med Aromat 13(6): 566 – 574.

INTRODUCTION

Quinone moieties are present in many drugs such as doxorubicin, mitomycin, mitoxantrone, saintopin, which are used clinically in the therapy of solid cancers. Anticancer quinones are currently the focus of intensive research because of their biological activity and complex modes of action, which differ depending on their particular structure. A number of natural and synthetic heterocyclic quinones have important biological activities such as antitumoral, antiprotozoan, and antibiotic activities (Tsizin et al., 1978; Bass et al., 2013). Many of these compounds possess antineoplastic chemotherapeutic properties (Kock et al., 2005). Among them, carbazolequinone alkaloids (Figura 1) exhibit notable biological properties such as cardiotonic, antituberculosis, and neuronal cell-protecting activities (Shin-Ya et al., 1997; Kazumi et al., 1989; Knölker et al., 2003; Choi et al., 2006; Choi et al., 2008). Pyrido- and quinolinocarbazole alkaloids (Figure 1) are also well-

known for their wide range of potent biological activities (Gribble et al., 1990; Knölker et al., 2008). Ellipticine (5,11-dimethyl-6H-pyrido[4,3- b]carbazole) and 9-methoxyellipticine (Figure 1) were isolated from the leaves of Ochrosia elliptica Labill by Goodwin (Goodwin et al., 1959). The biological activity of ellipticine was considered to be based mainly on DNA intercalation and topoisomerase II inhibition. The first clinical success of celiptium (Figura 1) (Juret et al., 1978; Paoletti et al., 1980; Dodion et al., 1982; Juret et al., 1982; Clarysse et al., 1984) led to extensive studies into the synthesis of ellipticinium derivatives, and several of these progressed to clinical trials (Rouesse et al., 1985; Ohashi & Oki, 1996). Since the commercialization of some ellipticine derivatives and their successful clinical uses prompted tremendous development in the chemistry and biology of pyridocarbazole alkaloids.

Figure 1
Structure of ellipticine and some analogues

$$R = H$$
, Ellipticine

$$R = OMe$$
, 9-Methoxyellipticine

Celiptium

Calothrixin B

Ellipticine quinone

Ellipticine quinone (Gribble et al., 1984; Kecha et al., 1985; Bennasar et al., 2005) is a pivotal synthetic intermediate in the early Gribble syntheses of ellipticines that shows antitumor activity (Bernardo et al., 2004).

The only known quinolino[4,3-b]carbazole alkaloid, calothrixin B (Figure 1) (7H-indolo[3,2i]phenanthridine-7,13(12H)-dione), was first obtained from a blue-green algae Calothrix cyanobacteria in 1999 (Rickards et al., 1999). It is a pentacyclic quinone that exhibits antimalarial activity as well as activity against human HeLa cancer cells and inhibition of RNA polymerase (Chen et al., 2003; Khan *et al.*, 2009).

Based on the above precedents and recent results in the high yield synthesis of antiproliferative phenylaminoisoquinoline-5,8-quinones endowed with in vitro topoisomerase I inhibition (Valderrama et al., 2009; Monsalve et al., 2012), we were interested to synthesize new isomeric ellipticine quinones to evaluate their in vitro antiproliferative activity on a panel of three cancer cell lines.

MATERIALS AND METHODS General

All reagents and solvents were commercially available reagent grade. Melting points were determined on a Stuart Scientific SMP3 apparatus and are uncorrected. ¹H-NMR spectra were recorded on Bruker AM-200 and AM-400 instruments in CDCl₃ + DMSO-d₆. ¹³C-NMR spectra were obtained at 50 and 100 MHz in CDCl₃ + DMSO-d₆. Chemical shifts are expressed in δ ppm downfield relative to TMS, and the coupling constants (J) are reported in Hertz. The HRMS were obtained on a Thermo Finnigan spectrometer, model MAT 95XP. Silica gel Merck 60 (70–230 mesh) was used for preparative column chromatography, and TLC aluminum foil 60F₂₅₄ for analytical TLC.

Chemistry

of 1,3-Dimethy-l-4-methoxycarbonyl-Synthesis isoquinoline-5,8-quinone 1:

A suspension of 2,5-dihydroxyacetophenone (1.0 mmol), silver(II) oxide (2.2 mmol), and MgSO₄ (1g) and dichloromethane (25 mL) was stirred for 1 h. Silver (II) oxide (2.2 mmol) was added to the mixture and the stirring was continued for 90 min. mixture was filtered and the solvent was removed to yield crude quinone 1 (231 mg, 94%) which was chromatographed on silica gel (9:1)

dichloromethane/ethyl acetate) to yield pure quinone 1 (74%).

of 7-aminoisoquinolinequinone **Synthesis** derivatives 2a-c:

A suspension of quinone 1 (1 mmol), the required arylamine (2 mmol), CeCl₃.7H₂O (0.05 mmol), and ethanol (20 mL) was left with stirring at rt after completion of the reaction as indicated by TLC. The reaction mixture was partitioned between chloroform/water, the organic extract was washed with water (2 x 15 mL), dried over Na₂SO₄, and evaporated under reduced pressure. The residue was chromatographed column over silica acetate (CH₂Cl₂/ethyl 90:10) to vield the corresponding aminoquinones 2a, 2b and 2c in 93%, 89% and 90% yield respectively. The spectral properties of the compounds **2a-c** (¹RMN, ¹³C RMN) were comparable with those previously described for these compounds (Valderrama et al., 2006).

Synthesis of pyrido[3,4-b]carbazole-5,11-dione derivatives 3a-c:

A suspension of the aminoisoguinolinequinone 2a, **2b** or **3c** (1 mmol), Pd(OAc)₂ (1,2 mmol) and glacial acetic (5mL) was refluxed under nitrogen atmosphere after completion of the reaction as indicated by TLC. The reaction mixture was cooled, neutralized with solid sodium hydrogencarbonate and filtered. The filtrate was diluted with water (20 mL) and then extracted with ethyl acetate (2 x 15 mL). The organic extract was chromatographed on silica gel (CH₂Cl₂) pyrido[3,4-b]carbazole-5,11-dione give derivatives 3a-c.

Methyl 1,3-dimethyl-5,11-dioxo-10,11-dihydro-5H*pyrido*[3,4-b]carbazole-4-carboxylate 3a:

Orange solid (60% yield), mp 108.5-110°C; IR: v_{max} 3317 (NH), 1725 (C=O), 1652 (C=O quinone); ¹H RMN (400 MHz, CDCl₃ + DMSO-d₆): δ 2.62 (s, 3H, 3-Me), 3.08 (s, 3H, 1-Me), 4.10 (s, 3H, CO₂Me), 7.43 (m, 2H, arom.), 7.50 (d, J = 8.0 Hz, 1H, arom.), 8.26(d, J = 8.0 Hz, 1H, arom.), 9.62 (s, 1H, NH). ¹³C NMR (400 MHz, CDCl₃ + DMSO-d₆): δ 22.7, 26.0, 53.0, 113.8, 116.9, 121.7, 123.2, 124.1, 124.3, 125.8, 127.2, 138.0, 138.5, 139.5, 160.0, 160.6, 169.6, 178.7, 178.7. HRMS (APCI): [M+] calcd for $C_{19}H_{14}N_2O_4$: 334.09536; found: 334.09484.

Methyl 7-methoxy-1,3-dimethyl-5,11-dioxo-10,11-dihydro-5H-pyrido[3,4-b]carbazole-4-carboxylate 3b:

Red solid (53% yield), mp 233-234°C; IR: v_{max} 3283 (NH), 1726 (C=O), 1667 and 1657 (C=O quinone); ¹H RMN (400 MHz, CDCl₃ + DMSO-d₆): δ 2.61 (s, 3H, 3-Me), 3.02 (s, 3H, 1-Me), 3.89 (s, 3H, OMe), 4.10 (s, 3H, CO₂Me), 7.06 (d, J = 9.0 Hz, 1H, arom), 8.38 (d, J = 9.0 Hz, 1H, arom), 9.45 (s, 1H, NH). ¹³C NMR (400 MHz, CDCl₃ + DMSO-d₆): δ 22.8, 30.9, 53.4, 55.8, 103.2, 114.2, 116.9, 119.9, 121.9, 125.3, 126.0, 132.6, 137.3, 139.3, 157.9, 160.5, 160.9, 169.7, 178.1, 178.8. HRMS (APCI): [M+] calcd for $C_{20}H_{16}N_2O_5$: 364.10593; found: 364.10522.

Methyl 6,9-dimethoxy-1,3-dimethyl-5,11-dioxo-10,11-dihydro-5H-pyrido[3,4-b]carbazole-4-carboxylate 3c:

Purple solid (49% yield), mp 245.5 - 247.5 °C; IR: v_{max} 3424 (NH), 1727 (C=O), 1668 and 1659 (C=O quinone); ¹H RMN (400 MHz, CDCl₃ + DMSO-d6): δ 2.94 (s, 3H, 3-Me), 3.33 (s, 3H, 1-Me), 3.83 (s, 3H, OMe), 3.90 (s, 3H, OMe), 3.93 (s, 3H, CO₂Me), 6.67 (d, J = 8.6 Hz, 1H, arom), 6.88 (d, J = 8.6 Hz, 1H, arom), 8.26 (s, 1H, NH). ¹³C NMR (400 MHz, CDCl₃ + DMSO-d6): δ 22.1, 26.0, 53.0, 56.5, 56.7, 104.9, 108.1, 116.3, 125.9 (2C), 130.9, 138.5 (2C), 142.1, 149.3, (2C), 159.4, 159.9, 169.2, 176.6, 178.1. HRMS (APCI): [M+] calcd for C₂₁H₁₈N₂O₆: 394.11649; found: 394.11533.

Electrochemical Measurement (Prieto et al., 2007)

Cyclic voltammograms of compounds were obtained Bioanalytical Sytem BAS CV-50W a electrochemical analyzer. A small capacity measuring cell was equipped with a platinum disc as working electrode, an Ag/10 nM Ag (MeCN) reference electrode for non aqueous solvent, with a platinum wire auxiliary electrode, a mechanical ministirrer, and a capillary to supply an inert argon atmosphere. A 0.1 M solution of tetrabutylammonium tetrafluoroborate in acetonitrile was used as supporting electrolyte.

Anticancer assay (Rodríguez et al., 1999)

The cell lines used in this work were obtained from the American Type Culture Collection (ATCC, Manasas, VA, USA). They included MRC-5 normal human fibroblasts (CC-171), AGS human gastric adenocarcinoma cells (CRL-1739), SK-MES-1 human lung cancer cells (HTB-58, and J82 human

bladder carcinoma cells (HTB-1). After the arrival of the cells, they were proliferated in the corresponding culture medium as suggested by the ATCC. The cells were stored in medium containing 10% glycerol in liquid nitrogen. The viability of the cells after thawing was higher than 90% assessed by trypan blue exclusion test. Cells were sub-cultured once a week and medium was changed every two days. Cells were grown in the following media: MRC-5, SK-MES-1, and J82 in MEM, and AGS cells in Ham F-12. The MEM medium contained 2 mM_L-glutamine, 1 mM sodium pyruvate, and 1.5 g/L sodium hydrogencarbonate. Ham F-12 was supplemented with 2 mM _L-glutamine and 1.5 g/L sodium hydrogencarbonate. All media were supplemented with 10% heat-inactivated FBS, 100 IU/mL penicillin, and 100 µg/mL streptomycin in a humidified incubator with 5% CO₂ in air at 37 °C. For the experiments, cells were plated at a density of 50,000 cells/mL in 96-well plated. One day after seeding, the cells were treated with the medium containing the compounds at concentrations ranging from 0 to 100 µM during 3 days, and finally the MTT reduction assay was carried out. The final concentration of MTT was 1 mg/mL. The compounds were dissolved in DMSO (1% final concentration) and complete medium. Untreated cells (medium containing 1% DMSO) were used as controls. Each experiment was carried out in sextuplicate.

RESULTS AND DISCUSSION

We explore the access to isomeric ellipticine quinones from phenylaminoisoquinolinequinones by using a well-documented carbazolequinone synthetic method based on the palladium-catalyzed intramolecular oxidative coupling reaction of arylamino-1,4-quinones (Akerman et al., 1975). This method has been successfully employed for the synthesis of ellipticine and related alkaloids from diarylamines (Miller & Mook, 1980; Motoi et al., 1991; Knölker & Fröhener, 1998). The entry to the target isomeric ellipticine quinones 3a-c was planned from aminoisoquinoline-5,8-quinones 2a-c by using the palladium-catalyzed oxidative coupling reaction. The elected aminoisoquinoline-5,8-quinones 2a-c were prepared from isoquinolinequinone 1 which in turn was synthesized through a previously reported one pot procedure from 2,5-dihydroacetophenone, methyl aminocrotonate and silver (II) oxide (Valderrama et al., 2006). Scheme 1 outlined the reaction sequence to prepare the ellipticine quinones 3a-c.

The oxidative cyclization of **2a** to pyridocarbazolquinone **3a** was examined by using stoichiometric amounts of Pd(OAc)₂ in glacial acetic acid at reflux. After several trials the cyclization

products **3a-3c** were isolated in 60, 53 and 49% yields respectively.

The structure of the new compounds **3a-c** were fully established by mean of their ¹H/¹³C NMR and high resolution mass spectra.

Scheme 1
Synthesis of isomeric ellipticine quinones 3a-c

The redox potentials of compounds 3a-c were measured by cyclic voltammetry in acetonitrile as solvent, at room temperature, using a platinum tetraethylammonium electrode and 0.1 M tetrafluoroborate as the supporting electrolyte (Prieto et al., 2007). All compounds show two one-electron reduction waves to form the corresponding anionradical and dianion. The first half-wave potential values, $E_{1/2}^{I}$, evaluated from the voltammograms, are summarized in Table 1. The data indicate that the $E_{1/2}^{l}$, values for the first electron, which is related with the formation of the semiquinone radical anion, are in the potential range 578-624 mV. Comparison

of the half wave potentials of **3a** and **3b** with those of their respective precursors **2a** and **2b** indicate that reduction of the products are located at a more positive region with respect to their precursors. The results revealed that the donor-acceptor interactions between the isoquinolinequinone nucleus (acceptor) and the arylamine group (donor) in **2a** and **2b** is more favorable than that of the acceptor with the fused indole fragment in compounds **3a** and **3b**. In the case of quinone **3c** and its precursor **2c** it was observed that the interaction of the acceptor with their respective donors is more favorable in **3c** than **2c**.

Structure	Structure Compound		\mathbb{R}^2	\mathbb{R}^3	$-E_{1/2}^{I}$ (mV)
R^3 O CO_2Me R^2 \downarrow \downarrow Me	2a	Н	Н	Н	592
	2 b	Н	OMe	Н	622
R ¹ H O Me	2c	OMe	Н	OMe	573
R^3 O CO_2Me R^2 Me	3a	Н	Н	Н	578
	3 b	Н	OMe	Н	588
R ¹ H O Me	3c	OMe	Н	OMe	624

Table 1 Electrochemical potentials of compounds 2a-c and 3a-c.

The newly synthesized isomeric ellipticine quinones **3a-c** were evaluated for their *in vitro* anticancer activities against human normal cell: MRC-5 human lung fibroblasts and three human tumor cells: AGS gastric adenocarcinoma, SK-MES-1 lung cancer, and J82 bladder carcinoma, in 72 h drug exposure MTT assays. Etoposide, a clinically used anticancer agent, was used as a positive control. The antiproliferative activity of the compounds was measured using a conventional microculture tetrazolium reduction assay (Scudiero *et. al.*, 1988;

Van de Loosdrecht *et al.*, 1994). The antiproliferative activities by each of the heterocyclic quinones are expressed in terms of IC_{50} (Table 2). The previously reported antiproliferative activity of arylaminoisoquinolinequinone **2a-c** were included in Table 2 together with those of their cyclization products **3a-c** to get information on the differences in the antiproliferative activity as consequence of the eventual redox cycling and/or DNA-binding biological mechanism.

Table 2
Antiproliferative activity of isomeric ellipticine quinones 3a-c and its precursors 2a-c

3а-с

IC	(N/I)8
1050	$(\mu M)^{i}$

N°	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	MRC-5 ^b	AGS ^c	SK-MES-1 ^d	J82 ^e
2a	Н	Н	Н	5.6	2.1	4.2	5.8
2b	H	OMe	Н	9.0	2.3	7.2	7.4
2c	OMe	Н	OMe	31.3	19.9	>100	>100
3a	H	Н	Н	2.4	1.2	3.9	2.9
3 b	H	OMe	H	2.5	2.4	7.5	2.4
3c	OMe	Н	OMe	>100	38.6	33.9	>100
-	Etoposide			3.9 ± 0.2	0.36 ± 0.02	2.5 ± 0.2	2.8 ± 0.2

^a Data represent mean average values for six independent determinations.

^b Human lung fibroblasts cells.

^c Human gastric adenocarcinoma cell line.

d Human lung cancer cell line.

^e Human bladder carcinoma cell line.

The screening showed that compounds 3a-c exhibit significant antitumor activity in the range IC₅₀: 1.2-38.9 µM. As indicated in Table 2, the antitumor activity of compounds 3a and 3b on bladder cancer cells were comparable to that shown by the reference drug etoposide (IC₅₀ = $2.8 \mu M$). Comparison between the IC_{50} and $E^{I}_{1/2}$ values, indicate that for compounds 3a and 3b, the more positive the $E_{1/2}$ (respect to compounds 2a and 2b) the stronger the antitumor promoting effect on AGS, J82 and SK-MES-1 cell lines. On the contrary, **3b** shows less cytotoxic activity in all the cell lines compared to 2b. Analyses of the data revealed that the first reduction potential $E_{1/2}$ is an important parameter determining the antitumoral activity on AGS gastric adenocarcinoma, SK-MES-1 lung adenocarcinoma and J82 bladder carcinoma cell lines.

CONCLUSIONS

In conclusion, we have described preliminary results on the synthesis and antiproliferative evaluation of three new isomeric ellipticine quinones The new quinones expressed moderate to high *in vitro* antiproliferative activity against three human cancer cell lines: AGS (gastric), SK-MES-1 (lung) and J82 (bladder) cell lines. Compound 3b appears as a promising active compound against bladder cancer cell line, with IC $_{50}$ value at 2.4 μ M, comparable to that of the anti-cancer agent etoposide.

ACKNOWLEDGEMENTS

We thank FONDECYT, Fondo Nacional de Ciencia y Tecnología (Grant N° 1060591) for financial support to this study.

REFERENCES

- Akerman B, Eberson L, Jonsson E, Petterson E. 1975. Palladium-promoted cyclization of diphenyl ether, diphenylamine, and related compounds. **J Org Chem** 40: 1365 1366.
- Bass PD, Gubler DA, Judd TC, Williams RM. 2013.

 Mitomycinoid alkaloids: mechanism of action, Biosynthesis, total syntheses, and synthetic approaches. Chem Rev 113: 6816 6863.
- Bennasar ML, Roca T, Ferrando FJ. 2005. Regioselective intramolecular reactions of 2-indolylacyl radicals with pyridines: A direct

- synthetic entry to ellipticine quinones. **J Org Chem** 70: 9077 9080.
- Bernardo PH, Chai CLL, Heath GA, Mahon PJ, Smith GD, Waring P, Wilkes BA. 2004. Synthesis, electrochemistry, and bioactivity of the cyanobacterial calothrixins and related quinones. **J Med Chem** 47: 4958 4963.
- Chen X, Smith GD, Waring P. 2003. Human cancer cell (Jurkat) killing by the cyanobacterial metabolite calothrixin A. **J Appl Phycol** 15: 269 277.
- Choi TA, Czerwonka R, Fröhner W, Krahl MP, Reddy KR, Franzblau SG, Knölker H. 2006. Synthesis and activity of carbazole derivatives against Mycobacterium tuberculosis. **Chem Med Chem** 1: 812 815.
- Choi TA, Czerwonka R, Forke R, Jager A, Knöll J, Krahl MP, Krause T, Reddy KR, Franzblau SG, Knölker HJ. 2008. Transition metals in organic synthesis Part 83: Synthesis and pharmacological potential of carbazoles. **Med Chem Res** 17: 374 385.
- Clarysse A, Brugarolas A, Siegenthaler P, Abele R, Cavalli F, de Jager R, Renard G, Rozencweig M, Hansen HH. 1984. Phase II study of 9-hydroxy-2N-methylellipticinium acetate. **Eur J Cancer Clin Oncol** 20: 243 247.
- Dodion P, Rozencweig M, Nicaise C, Piccart M, Cumps E, Crespeigne N, Kisner D, Kenis Y. 1982. Phase I clinical study of 9-hydroxy-2N-methyl-ellipticinium acetate (NSC-264137) administered on a 5-day i.v. schedule. **Eur J Cancer Clin Oncol** 18: 519 522.
- Goodwin S, Smith AF, Horning EC. 1959. Alkaloids of *Ochrosia elliptica* Labill. **J Am Chem Soc** 81: 1903 1908.
- Gribble GW, Saulnier MG, Sibi MP, Obaza-Nutaitis JA.1984. Synthesis and Diels-Alder reactions of 1,3-dimethyl-4-(phenylsulfonyl)-4H-furo[3,4-b]indole. A new annulation strategy for the construction of ellipticine and isoellipticine. **J Org Chem** 49: 4518 4523.
- Gribble GW. 1990. **The Alkaloids.** A Brossi Ed., Academic Press, New York, USA.
- Juret P, Tanguy A, Girard A, Le Talaer JY, Abbatucci JS, Dat-Xuong N, Le Pecq JB, Paoletti C. 1978. Preliminary trial of 9hydroxy-2-methyl ellipticinium (NSC 264-

- 137) in advanced human cancers. **Eur J Cancer** 14: 205 206.
- Juret P, Heron JF, Couette JE, Delozier T, Le Talaer JY. 1982. Hydroxy-9-methyl-2-ellipticinium for osseous metastases from breast cancer: a 5-year experience. **Cancer Treat Rep** 66: 1909 1916.
- Kazumi T, Masataka I, Hiroshi F. 1989. Triphasic inotropic response of guinea-pig papillary muscle to murrayaquinone-A isolated from Rutaceae. **Eur J Pharmacol** 169: 137 145.
- Kecha DM, Gribble GWJ. 1985. A convenient synthesis of 3-acylindoles via Friedel Crafts acylation of 1-(phenylsulfonyl) indole. A new route to pyridocarbazole-5,11-quinones and ellipticine. **J Org Chem** 50: 5451 5916.
- Khan QA, Lu J, Hecht SMJ. 2009. Calothrixins, a new class of human DNA topoisomerase I poisons. **J Nat Prod** 72: 438 442.
- Knölker HJ, Fröhener W. 1998. Palladium-catalyzed total synthesis of the antibiotic carbazole alkaloids carbazomycin G and H. J Chem Soc Perkin Trans 1: 173 176.
- Knölker HJ, Reddy KR. 2003. Indoloquinones, Part 8. Palladium(II)-catalyzed total synthesis of murrayaquinone A, Koeniginequinone A, and Koeniginequinone B. **Heterocycles** 60: 1049 - 1052.
- Knölker HJ. 2008. **The Alkaloids**. Elsevier Science: New York, USA.
- Kock I, Heber D, Weide M, Wolschendorf U, Clement B. 2005. Synthesis and biological evaluation of 11-Substituted 6-Aminobenzo[c]phenanthridine derivatives, a new class of antitumor agents. **J Med Chem** 48: 2772 2777.
- Miller B, Mook T. 1980. A general synthesis of 6-H-pyrido[4,3-b]carbazole alkaloids. **Tetrahedron Lett** 21: 3319 3322.
- Monsalve F, Valderrama JA, Vásquez D, Ibacache JA, Rodríguez J, González D, Leiva E, González E. 2012. Inhibition of human topoisomerase I and activation of caspase-3 by aza-angucyclinones and arylaminopyrimido[4,5-c]isoquinoline-7,10-quinones. **Int J Mol Med** 30: 151 156.
- Motoi Y, Ito C, Furukawa H. 1991. Synthesis of some carbazolequinone alkaloids and their analogues. Facile palladium-assisted intramolecular ring closure of arylamino-1,4-benzequinonesto Carbazole-1,4-quinone. Chem Pharm Bull 39: 328 334.

- Ohashi M, Oki T. 1996. Overview oncologic, endocrine & metabolic: Ellipticine and related anticancer agents. **Opin Ther Pat** 6: 1285 1294.
- Paoletti C, Le Pecq LB, Dat-Xuong N, Juret P, Garnier H, Amiel JL, Rouesse J. 1980. Antitumor activity, pharmacology, and toxicity of Ellipticine, ellipticinium and 9-Hydroxy derivatives: Preliminary clinical trials of 2-methyl-9-Hydroxy ellipticinium (NSC 264-131). **J Recent Results Cancer Res** 74: 107 109.
- Prieto Y, Muñoz M, Arancibia V, Valderrama M, Lahoz FJ, Martín ML. 2007. Synthesis, structure and properties of ruthenium(II) complexes with quinolinedione derivatives as chelate ligands: Crystal structure of [Ru(CO)₂Cl₂(6-methoxybenzo[g]quinoline-5,10-dione)]. **Polyhedron** 26: 5527 5532.
- Rickards RW, Rothschild JM, Willis AC, de Chazal NM, Kirk J, Kirk K, Saliba KJ, Smith GD. 1999. Calothrixins A and B, novel pentacyclic metabolites from Calothrix cyanobacteria with potent activity against malaria parasites and human cancer cells. **Tetrahedron** 55: 13513 13520.
- Rouesse JG, Le CT, Caille P, Mondesir JM, Sancho-Garnier H, May-Levin F, Spielmann M, De JR, Amiel JL. 1985. Phase II study of elliptinium in advanced breast cancer. Cancer Treat Rep 69: 707 708.
- Rodríguez JA, Haun M. 1999. Cytotoxicity of *trans*Dehydrocrotonin from *Croton cajucara* on
 V79 cells and rat hepatocytes. **Planta Medica** 65: 522 526.
- Scudiero DA, Shoemaker RH, Paull KD, Monks A, Tierney S, Nofziger TH, Currens MJ, Seniff D, Boyd MR. 1988. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. **Cancer Res** 48: 4827 4833.
- Shin-Ya K, Kunigami T, Kim JS, Furihata K, Hayakawa Y, Seto H. 1997. Carquinostatin B, a new neuronal cell-protecting substance produced by Streptomyces exfoliates. **Biosci Biotechnol Biochem** 61: 1768.
- Tsizin YS. 1978. New methods the synthesis of heterocyclic quinones review. **Chem Heterocycle Comp** 14: 925 940.
- Van de Loosdrecht AA, Beelen RH, Ossenkoppele GJ, Broekhoven MG, Langenhuijsen MM.

- 1994. A tetrazolium-based colorimetric MTT assay to quantitate human monocyte mediated cytotoxicity against leukemic cells from cell lines and patients with acute myeloid leukemia. **J Immunol Methods** 174: 311 320.
- Valderrama JA, Gonzalez F, Pessoa-Mahana D, Tapia R, Houda Fillion F, Rodriguez JA, Theoduloz C, Schmeda-Hirschmann G. 2006. Studies on quinones. Part 41: Synthesis and cytotoxicity of isoquinoline-containing polycyclic quinones. **Bioorg Med Chem** 14: 5003 5011.
- Valderrama JA, Ibacache JA, Arancibia V, Rodriguez J, Theoduloz C. 2009. Studies on quinones. Part 45: Novel 7-aminoisoquinoline-5,8-quinone derivatives with antitumor properties on cancer cell lines. **Bioorg Med Chem** 17: 2894 2901.