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Abstract

In this paper, we establish a relation between an argumentation based system: Defeasible Logic Programming (DELP),
and a nonmonotonic system: Reiter’s Default Logic. This relation is achieved by introducing a variant of DELP and
a transformation that maps default theories to defeasible logic programs. The transformation allows to associate the
answers of a DELP Interpreter with the consequences, credulous and skeptical, of the default theory. Thus, this work
establishes a link between a well understood nonmonotonic system and a argumentation based system.

Keywords: Knowledge Representation, Nonmonotonic Reasoning, Argumentative Reasoning, Default Logic, Defea-
sible Logic Programming.

1 Introduction and Motivation

In general, it is interesting and important to compare,
analyze and assess the alternative tools that could be
used to confront a specific problem. In particular,
in the area of Artificial Intelligence there are several
research lines dedicated to the development of for-
malisms and tools regarding Knowledge Representa-
tion. These formalisms are so diverse that many times
it is difficult to recognize their advantages, disadvan-
tages and differences in order to make a plausible use
of them. For this reason, it is interesting to analyze the
relation among knowledge representation formalisms
to evaluate their differences and similarities. Sev-
eral works relating diverse approaches of defeasible
and non-monotonic reasoning have been developed
[8, 7, 5, 6, 2, 3].

In this paper, we analyze the relation between an ar-
gumentation based system like Defeasible Logic Pro-
gramming (DELP), and a nonmonotonic system like
Reiter’s Default Logic. In order to establish this re-
lation we introduce (Section 3) a variant of DELP,
called DELP∅, and a number of properties it verifies.
Then, we define a transformation (Seccion 5) that al-
lows to map default theories to defeasible logic pro-
grams. The transformation allows to associate the an-
swers of a DELP∅ interpreter with the consequences,
credulous and skeptical, of the original default the-
ory. Finally, we relate the results of this work with the
Dung’s argumentative framework for Default Logic
defined in [9], and we briefly discuss how the re-
lation established between Default Logic an DELP
can be used to relate DELP to other meaningful non-
monotonic formalisms.
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15043, and PAV 076) and theSecretar ́a de Ciencia y Tecnolog ́a of Universidad Nacional del Sur (24/N016). Telma Delladio is partially supported
by CONICET
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2 DELP

Defeasible Logic Programming (DELP) is a formal-
ism that combines Logic Programming and Defeasi-
ble Argumentation. In DELP, knowledge is repre-
sented using facts, strict rules or defeasible rules:

• Facts are ground literals representing atomic
information or the negation of atomic infor-
mation using the strong negation “¬ ” (e.g.
¬ rain).

• Strict Rules are denotedL0 ← L1, . . . , Ln,
where thehead L0 is a ground literal and the
body {Li}i>0 is a set of ground literals (e.g.
¬ day ← night).

• Defeasible Rules are denotedL0
—≺ L1, . . . , Ln,

where thehead L0 is a ground literal and the
body {Li}i>0 is a set of ground literals. (e.g.
cold —≺ winter).

Syntactically, the symbol “—≺” is all that distinguishes
a defeasible rule from a strict one. Pragmatically, a
defeasible rule is used to represent defeasible knowl-
edge,i.e. tentative information that may be used if
nothing could be posed against it. A defeasible rule
“Head —≺ Body.” is understood as expressing that
“reasons to believe in the antecedent Body provide
reasons to believe in the consequent Head” [14].

A Defeasible Logic Program (de.l.p.)P is a set of
facts, strict rules and defeasible rules. When required,
P is denoted(Π, ∆) distinguishing the subsetΠ õf
facts and strict rules, and the subset∆of defeasible
rules. Observe that strict and defeasible rules are
ground.

Strong negation is allowed in the head of pro-
gram rules, and hence may be used to repre-
sent contradictory knowledge. From a program
(Π, ∆) contradictory literals could be derived, how-
ever, the setΠ (which is used to represent non-
defeasible information) must possess certain internal
coherence. Therefore,Π has to be non-contradictory,
i.e. no pair of contradictory literals can be derived
from Π. Given a literalL the complement with re-
spect to strong negation will be denotedL (i.e. a =
¬ a and¬ a = a).

DELP incorporates an argumentation formalism for
the treatment of the contradictory knowledge that can
be derived from(Π, ∆) This formalism allows the
identification of the pieces of knowledge that are in
contradiction. A dialectical process is used for de-
ciding which information prevails. In particular, the

argumentation-based definition of the inference rela-
tion makes it possible to incorporate a treatment of
preferences in an elegant way.

In DELP a literalL is warrantedfrom (Π, ∆) if there
exists a non-defeated argumentA supportingL. In
short, anargumentfor a literalL, denoted〈A, L〉, is a
minimal set of defeasible rulesA⊆∆ such thatA∪Π
is non-contradictory and there is a derivation forL
from A∪Π. In order to establish if〈A, L〉 is a non-
defeated argument,argument rebuttalsor counter-
argumentsthat could bedefeatersfor 〈A, L〉 are con-
sidered,i.e., counter-arguments that by some crite-
rion are preferred to〈A, L〉. An argument〈A1, L1〉
counter-argues orattacks〈A2, L2〉 at some literalh,
if and only if there exists a sub argument〈A, h〉 of
〈A2, L2〉 (i.e. A ⊆ A2) such thath andL2 disagree;
that is,Π ∪ {h, L2} is contradictory.

Since counter-arguments are arguments, there may
exist defeaters for them, and defeaters for these de-
featers, and so on. Thus, a sequence of arguments
calledargumentation lineis constructed, where each
argument defeats its predecessor in the line. Some
restrictions are imposed over these lines to be consid-
eredacceptable argumentation lines.

• Non circularity: circular argumentation lines
are not permitted.

• Concordance: the set of supporting arguments
must be non contradictory and the same is re-
quired for interfering arguments.

• Blocking-Blocking situations: if a blocking de-
featerAi occurs in the line[A1, . . . , Ak], Ai+1

cannot be a blocking defeater forAi.

Usually, each argument has more than one defeater
and more than one argumentation line exists. There-
fore, a tree of arguments calleddialectical treeis con-
structed, where the root is〈A, h〉 and each path from
the root to a leaf is an argumentation line. Adialecti-
cal analysisof this tree is used for deciding whether a
literal is warranted. This dialectical analysis is carried
out labeling the arguments conforming the dialectical
tree. The arguments in the leaves of the tree are con-
sidered undefeated. Every inner node with at least a
child marked as undefeated, is considered and marked
as a defeated argument. In the other case, it is unde-
feated. Following this analysis, a literalh is said war-
ranted if there is a dialectical tree where the root is an
argument forh that has been marked as undefeated
(for a detailed explanation of this dialectical process
see [10]).
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In DELP, given a queryQ there are four possible an-
swers:YES, if Q is warranted;NO, if the complement
of Q is warranted;UNDECIDED, if neitherQ nor its
complement is warranted; andUNKNOWN, if Q is not
in the language of the program.

3 DELP∅ variant

In DELP, several elements can be adjusted thus defin-
ing a number of variants of DELP; for instance, the
notions of attack and defeat, as well as the conditions
required for acceptable argumentation lines. We will
consider a DELP variant, that we call DELP∅, ob-
serving the following condition:

• The relation defining the comparison criterion
is the empty set.

In general, given two conflicting arguments A and B,
they can be compared using some criterion. In that
case, if A is better than B, A is aproper defeaterfor
B. But, if neither of the two is better than the other, A
is ablocking defeaterfor B, and vice versa. Note that,
in DELP∅, since the comparison criterion is empty,
every attack is a blocking defeat and since there are
no proper defeaters, this criterion turns attack into de-
feat.

Remark 3.1
Every argumentation line in DELP∅ contains two ar-
guments at most.

Suppose there is an acceptable argumentation line
Γ = [A1, . . . , An], n > 2. In such case, there is a sub-
sequence of arguments[Ai, Ai+1, Ai+2] in Γ. Since
every defeater in DELP∅ is a blocking defeater,Ai+2

is a blocking defeater forAi+1 and,Ai+1 is a block-
ing defeater forAi. But, in this case,Γ would not be
an acceptable argumentation line, because there can-
not be two consecutive blocking attacks (see the third
condition of an acceptable argumentation line).

Remark 3.2
Every dialectical tree in DELP∅ has, at most, two lev-
els.

Since every path of a dialectical tree is an accept-
able argumentation line, and in DELP∅, argumenta-
tion lines are composed by one or two arguments, ev-
ery path contains, at most, two arguments. Thus, ev-
ery dialectical tree has, at most, two levels.

Remark 3.3
Every dialectical tree whose root is marked asunde-
featedis a tree with just one node.

If the argument of the root has a child, this means that
the root has a defeater and the root is then defeated
(since, from remark 3.1: there are no defeaters for the
defeaters)

Remark 3.4
In DELP∅, a literal l is warranted iff any argument
for l is not attacked.

If a literal l is warrantedthere is a dialectical tree, for
an argumentA supportingl, whose root is marked as
undefeated(from the definition of warranted literal in
DELP). This dialectical tree has a single node (from
remark 3.3 ) and this means that there is no argument
attacking it. If there is some argument that attacks the
rootA, it has to be in the tree and then the root would
be marked asdefeated.

Remark 3.5
In DELP∅ an argumentA is warranted iff every literal
present inA is warranted.

This condition establishes that all literals contained in
the defeasible derivation that constitutes a warranted
argument are also warranted. Suppose this is not true,
then exists a warranted argumentA such that a literal
Li present inA is not warranted. In this case, every
argument forLi is defeated andLi is an attack point
in the argumentA. Therefore,A is attacked and de-
feated (from remark 3.4), which cannot happen, since
we assumed thatA is a warranted argument.

As mentioned, in DELP, two literalsp andq disagree
if Π ∪ {p, q} is a contradictory set (Π is the set of
strict rules). Then, ifΠ is empty,p and q must be
complementary literals.

Remark 3.6
Let A be an argument in DELP∅, if a literal p is
present inA and there is an argumentB for q such
thatp andq disagree thenA is not warranted.

In this case,B attacksA in p, for this reasonA is
defeated.

Remark 3.7 (Valid for general de.l.p.)
If there are no strict rules,p andq disagree iffp ≡ q.

4 Default Logic

A Default TheoryT = 〈W, D〉 consists of a set of
facts W of ground sentences. Each default rule in
D has the forma : b1,...,bn

c
(sometimes writtena :
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b1, . . . , bn/c), wherea is called the prerequisite,bi

are the justifications andc is the consequent of the
default. When the justification and the consequent of
a default rule are the same,a : c

c
, the default rule is

called anormal default rule. In generaljust(δ) de-
notes the set of justifications present in the ruleδ, and
given a set of default rulesR, just(R) is used to de-
note all the justifications present in the default rules
of R.

The intuitive meaning of a default is: ifa can be de-
rived and it is possible to consistently assume eachbi,
then concludec. Given a default theoryT = 〈W, D〉
an extensionE (or a Reiter extension) is a theoryE
satisfying that

E =
⋃
{Wi | i is a natural number}

W0 = W

Wi+1 = Th(Wi) ∪ {γ | (∃
α : β1,...,βn

γ
∈ D) ∧

({βi} ∪ E 6⊢ ⊥, ∀i, 1 ≤ i ≤ n) ∧ (α ∈Wi)}

Another way to characterize extensions in Default
Logic is through an operational semantics [1]. In this
characterization each extension is defined by a set
In(Π), whereΠ is a closed and successful process.
Given a sequence of default rulesS = 〈δ0, . . . , δn〉
the setIn(S) collects the information obtained by the
application of the defaults inS; that is, In(S) =
Th(W ∪ {γ | α : β

γ
occurs inS)}) Then, a pro-

cess is a special kind of sequence of default rules
〈δ0, . . . , δn〉 where each defaultδk is applicable to
In(〈δ0, . . . , δk−1〉). A processΠ is closed if there
is no applicable default ruleδ in D such thatδ does
not occur in Π, and a processΠ is successful if
In(Π) 6⊢ β for all β that is a justification of some de-
fault rule inΠ. Given a default theoryT = 〈W, D〉,
a literal l is a skeptical consequence ofT if l belongs
to every extension ofT , andl is a credulous conse-
quence ofT if l is present in some extension but not
in each extension. A default theory that has at least
one extension is calledcoherent.

In this work, we will consider finite propositional de-
fault theories with the following restrictions:

1. The theoryT = 〈W, D〉 is coherent.

2. The set of factsW is empty.

3. For every defaultα : β/γ, formulasβ andγ are
single literals.

Some of these restrictions could be dropped and we
will analyse this situation later. We are interested, at

this stage, in default theories that verify the condition:
W = ∅, since working with these theories enable us
to establish an indirect relation between DELP an an-
other nonmonotonic formalisms. In particular, it is
well known the works that study the relation between
Normal Logic Programming and Default Logic. This
connection is achieved through a link between stable
models for normal logic programs [11] and skeptical
consequences of default theories [4]. Normal logic
programs are translated into a default theory com-
posed by an empty set of facts, and a set of default
rules obtained as follows. Each rule of the form:

c← a1 . . . , an, notb1, . . . , notbm

is translated into a default rule of the form:

a1, . . . , an : ¬ b1, . . . ,¬ bm/c

In this way, a relation between DELP and this type
of default theories (with an empty set of facts) es-
tablishes a indirect link between DELP and Normal
Logic Programming.

5 Translating Default Theories
into DELP∅ programs

In this section, we present a transformation that al-
lows to map default theories to defeasible logic pro-
grams. The transformation is defined for default the-
ories that follow the restrictions given in section 4.

Given a default theoryT = 〈∅, D〉, we transformT
into a de.l.p.P = (∅, ∆) as follows:

1. For each defaultδi = α : β/γ ∈ D, the set∆
in the de.l.p.P includes the followingdefeasi-
ble rules:

(i) γ —≺ α, pi

(ii) ¬ pi —≺ β
(iii) pi —≺

wherepi is a new literal and rules (ii) and (iii)
are calledguard rules, andβ is the complement
of β.

When necessary, we denote the de.l.p.P as
T DL

delp(T )

The first defeasible rule (i), indicates that if the pre-
requisiteα is given, then the consequentγ could be
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derived. However, this is only allowed if it is pos-
sible to consistently assume the justification,β, and
this restriction is verified when the second rule does
not apply (ii). If the complement of the justification,
(i.e. β), is derived, there exists a derivation (and an
argument) for¬ pi and this constitutes an attack to
the argument forα. The last rule introduced by the
translation (iii) is simply used to enable, by default,
the new literalpi.

The translation for a default ruleδ = α : β/γ in-
troduces a new literalpi to block the derivation ofγ.
That is, in case that the complement of the justifica-
tion is derived, literalpi turns into an attack point, and
the argument for the consequence will be attacked.
Therefore, this argument is defeated classifying the
literal γ asUNDECIDED.

Note that default rules with an empty prerequisite are
written true : β/γ. These rules are translated, in the
same way, to the following defeasible rules:

(i) γ —≺ pi (ii) ¬ pi —≺ β (iii) pi —≺

Then, we will show that normal default rules can be
translated in a simpler, reduced form.

Example 1
Consider the default theoryT1 = 〈∅, D1〉, where

D1 = {(true : a/a), (a : ¬ x/y), (a : ¬ y/x), (a : d/d)}

The corresponding de.l.p. will bePT1
= (∅, ∆1),

where∆1 has the following defeasible rules.

D1 (i) (ii) (iii)
true : a/a a —≺ p1 ¬ p1

—≺ ¬ a p1
—≺

a : ¬ x/y y —≺ a, p2 ¬ p2
—≺ x p2

—≺

a : ¬ y/x x —≺ a, p3 ¬ p3
—≺ y p3

—≺

a : d/d d —≺ a, p4 ¬ p4
—≺ ¬ d p4

—≺

Each default rule is translated into a defeasible rule,
using an extra literal (pi) acting as a guard. A deriva-
tion for ¬ pi implies that the justification (from the
original default rule) cannot be assumed consistently.
In this way, the transformation captures, through these
three defeasible rules, the behavior of the original de-
fault rule.

Example 2
Consider a de.l.p.PT2

= (∅, ∆2), obtained from a
default theoryT2 = 〈∅, D2〉, where∆2 has the rules:

D2 (i) (ii) (iii)
x : a/b b —≺ x, p1 ¬ p1

—≺ ¬ a p1
—≺

y : ¬ b/c c —≺ y, p2 ¬ p2
—≺ b p2

—≺

true : x/x x —≺ p3 ¬ p3
—≺ ¬ x p3

—≺

true : y/y y —≺ p4 ¬ p4
—≺ ¬ y p4

—≺

x p1

b!
!!

p3!

p4!

y p2

c!
!!

x p1

b!
!!

:p2!

Figure 1: Arguments in PT2

This example shows the use given to the new liter-
als pi introduced in the translation. Literalp2 deter-
mines an attack point in the argument for the literal
c and this argument is defeated (see remark 3.5 and
figure 1). For this reason, literalc is not warranted in
DELP∅, it is an UNDECIDED literal. This attack re-
flects the incompatibility between the original default
rulesy : ¬ b/c andx : a/b. In the original default
theory, literalc is a credulous consequence, since no
successful process includes both default rules. There
is only a successful process includingx : a/b.

It is possible to identify in the de.l.p.P obtained by
the translation, two kind of attacks. Note that, every
attack inP reflects the existence of two applicable de-
fault rules that are incompatible. This incompatibility
arises for one of the following reasons:

• the consequences of both default rules are con-
tradictory, or

• the consequence of one of them is contradictory
with the justification of the other

Figure 2 depicts an attack that arise from contradic-
tion between the consequences of two default rules,
and figure 3, an attack over a justification. In this case
the (artificial) attack point is the new literal introduced
by the translation.

...

x pnc

 :c!
! !

...

a pc

c!
!!

ba
c
: yx

 :c
:

Figure 2: Consequence attack
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...

a pc

c!
!!

...

x pnb

 :b!
! !

:pc!

ba
c
:

yx

 :b
:

Figure 3: Justification attack

It is interesting to note, that normal default rules could
be translated in a more concise manner. The transla-
tion of a general default ruleα : β/γ has to model the
two main characteristics captured by a default rule:

- the antecedentα is needed to derive the conse-
quentγ (i).

- there is no knowledge against the justification
β (ii).

This translation is required to model, in DELP∅,
the interaction between conflicting information in the
same way it is done in Default Logic. Direct conflicts
between default rules arise when their consequents
are contradictory or the consequent of one default is
contradictory with the justification of the other. For
normal default theories justifications and consequents
are the same, therefore, a direct conflict between de-
fault rules arises when it is possible to derive informa-
tion against the consequent of a default rule. For this
reason it is possible to give a reduced translation for
normal default rules.

Reduced transformation
If the variant considered is DELP∅, the translation of
a normal default ruleα : γ/γ can be reduced to a
single defeasible rule:γ —≺ α.

That is, in the reduced transformation any argument
for ¬ γ attacks the argument forγ (see figure 4). This
attack establishes a defeat, because in DELP∅, attack
determines defeat. In the initial transformation, any
argument for¬ γ allows the formation of an argu-
ment for the literal¬ pi that attacks (block), in the
same way, the argument forγ. In this way, both trans-
formations reflect, in the obtained DELP∅ program,
the same pretended behaviour of the original default
logic.

Hence, in what follows, normal default rules will be
translated using the reduced form.

® pi

°!
!

...

®

°

!
...

:pi!
 :°

 :°

Figure 4: Reduced transformation for normal defaults

In this way, a DELP∅ program obtained by translating
the normal default rules into the general form or into
the reduced form, models in the same way the original
default theory. The dialectical analysis that could be
carried out in any of these translations is equivalent,
and this is because of the comparison criterion. The
only kind of defeaters present in DELP∅ are block-
ing defeaters. For this reason, if an argument has two
defeaters both are blocking defeaters. The elimina-
tion or addition of defeaters does not change the sce-
nario: the main argument remains defeated (see figure
5). These characteristics are proper of DELP∅, since
using a different comparison criterion proper defeats
can arise and, in these situations, the elimination of
one defeater could provoke others defeaters to change
their status (see figure 6).

a pi

b
 blocking

defeat  blocking
defeat

!
!

 :b :pi!

 :b

 blocking
defeat

a

b!

 :b

DefeatedDefeated

Figure 5: Defeats inDELP∅

a pi

b
 Blocking

defeat
 Proper

defeat? Blocking
defeat

!
!

 :b :pi!

 :b

 :b

a

b!

UndefeatedDefeated

Figure 6: Defeats in generalDELP
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Relation between DL andDELP∅

LetT = (W, D) be a default theory, such thatW = ∅,
P the de.l.p. obtained by the translation proposed, and
l a literal.

- Literal l is a skeptical consequence ofT iff l is
warranted fromP .

- Literal l is a credulous consequence ofT iff l is
undecided inP

In order to understand this relation, we can analyze
the relation between the processes determining the ex-
tensions of the default theory, and the arguments that
can be constructed using the defeasible rules obtained
by the translation. Note that we are considering just
the original literals in the theory, not thepi literals
added by the translation.

Given a default ruleδi = α : β/γ we definet(δi)
as the set of defeasible rules obtained by the trans-
lation of a default ruleδi. Thus, in the general case
t(δi) = {(γ —≺ α, pi), (¬ pi —≺ β), (pi —≺ )}. In the
same way, we define the set of defeasible rules ob-
tained by the entire set of default rulesD ast(D) =⋃

t(δi), ∀δi ∈ D. Finally, given a de.l.p.P = (Π, ∆)
and a setR ⊆ ∆ we denoteargsP (R) = {A :
〈A, h〉 is an argument structure inP andA ⊆ R}.

Now, let Γ be a closed and successful process of a
default theoryT = 〈∅, D〉, E = In(Γ) be the corre-
sponding extension,Γs be the set of defaults rules inΓ
(i.e. Γs = {δ | δ occurs inΓ}), andP = T DL

delp(T ) be
the de.l.p. obtained by the translation proposed. Note
that arguments inargsP (t(Γs)) are conflict free; that
is, for all argumentA in argsP (t(Γs)) there is no
other argumentB attackingA. Otherwise, conflict-
ing default rules would belong toΓ, and this is not
possible sinceΓ is a successful process. Moreover,
argsP (t(Γs)) is a maximal set of non-conflicting ar-
guments since every argumentB that does not at-
tack an argument inargsP (t(Γs)) comes from de-
fault rules that are not in conflict with the rules inΓ.
If such argumentB exists,Γ would not be closed.

In this way, if a literalw is warranted fromP there ex-
ists a non attacked argument〈Aw , w〉 that is in every
maximal conflict-free set of arguments. Then, literal
w will be in every extension ofT and it is a skep-
tical consequence ofT . On the other hand, given a
literal u if every supporting argument〈Au, u〉 is at-
tacked by other argument〈Bu′ , u′〉 both arguments
have to be in different conflict-free sets of arguments.
Therefore, two or more extensions exists and literalu
cannot be present in all of them. For this reason,u
will be a credulous consequence ofT . Note that,u is
undecided inT DL

delp(T ).

5.1 Dung’s framework for DL

The relation established between Default Logic and
DELP is, in some aspects, similar to the one estab-
lished in Dung’s work [9] which considers a default
theory as an argumentation framework. There, an ar-
gumentation frameworkAF (T ) = 〈ART , attacksT 〉
is defined for a default theoryT = 〈W, D〉, where:

- ART = {(K, k) | K ⊆ just(D) :
K is a support fork}

- (K, k) attacksT (K ′, k′) iff k ∈ K ′

A setK is said to be a support fork with respect toT
if there exists adefault derivationk1, k2 . . . , km with
km = k such that for eachki , eitherki ∈ W , or ki

is consequence of the preceding elements in the se-
quence orki = γ for a default ruleα : β1,...,βn

γ
such

thatα is a previous element in the sequence and every
βi is in K.

Defining this framework, Reiter’s extensions of
a default theoryT = 〈W, D〉 can be asso-
ciated to the stable extensions ofART . Re-
member that in Dung’s framework a set of argu-
ments S is a stable extension iffS = {A |
A is not attacked by any argument inS}. On the one
hand, given a set of argumentsA in ART the set
of consequences it supports are defined:flat(A) =
{k | ∃(K, k) ∈ A}. On the other hand, given
a set of consequencesE, the set of arguments that
are consistent with it, is also defined:ARGS(E) =
{(K, k) ∈ ART | ∀j ∈ K, {j} ∪ E 6⊢ ⊥}. There-
fore, E is a Reiter’s extension ofT = 〈W, D〉 iff
E = flat(ARGS(E)).

Considering the transformation proposed, we can see
that arguments fromT DL

delp(T ) can be used to identify
the arguments of this argumentative framework. Sup-
pose that〈A, t〉 is an argument in the de.l.p.T DL

delp(T ),
we can define the following set of literals:

KA = {l : (¬ pi —≺ ¬ l) ∈ T DL
delp(T ) and(pi —≺ ) ∈ A}

This setKA constitutes a support for literalt with re-
spect toT . That is,(KA, t) ∈ ART in Dung’s frame-
work. Observe that every argument〈A, t〉 in T DL

delp(T )
is constructed using the defeasible rules obtained by
the translation. However, the existence of a support-
ing argument fort is because of the presence of a set
of default rules (in the original default theory) that al-
lows adefault derivation Sfor t. The default rules that
could be used inT = 〈W, D〉 for constructingS are
identified by the literalspi mentioned inA. If a defea-
sible rulepi —≺ is present inA, the default ruleδi is
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used for the construction ofS, and this means that its
justifications,just(δi), can be consistently assumed.

5.2 Dropping some restrictions

In section 4 we establish some restrictions for the de-
fault theories considered. On the one hand, we are
considering default rules such that their justification
are single literals. This restriction can be dropped,
since given a default rule of the formα : β/γ where
β = β1, . . . , βn with eachβi is a single literal, the
translation is given by the rules

(i) γ —≺ α, pi1 , . . . , pin

(ii) ¬ pik
—≺ βk for all 1 ≤ k ≤ n

(iii) pik
—≺ for all 1 ≤ k ≤ n

On the other hand, we are considering only default
theories with an empty set of facts. This condition
could be dropped translating all clauses inW as strict
rules in the de.l.p.. In this case,W has to be consis-
tent and each formula is translated as a set of contra-
positive rules as strict rules in the de.l.p.. For each
clauseC = (c1 ∨ . . . ∨ cn) in W we include, for alli
(1 ≤ i ≤ n), thestrict rulesin the de.l.p.:

ci ← ¬ c1, . . . ,¬ ci−1,¬ ci+1, . . . ,¬ cn

Example 3
Given the theoryT3 = 〈W3, D3〉 where W3 =
{(x), (w), (t → ¬ b)} andD3 = {(x : b/b), (w :
t, r/q)}. The associated de.l.p.P3 has the rules:

x← b —≺ x ¬ pt —≺ ¬ t pt —≺

w ← q —≺ w, pt, pr ¬ pr —≺ r pr —≺

¬ b← t
¬ t← b

Finally, note that we are consideringcoherentdefault
theories (i.e. the existence of extensions are guaran-
teed). As mentioned in [9] having default theories
with default rules of the formα : β/¬ β prevents
to conclude any literal, since this kind of defaults col-
lapse the theory, and none extension can be obtained.
Under the preferred semantics (instead of the stable
ones), this non intuitive behavior is avoided because
this paradoxical default does not interfere with the
others. In case of DELP∅ and the translation pro-
posed, the behavior will be similar in the case of non
coherent default theories. The defeasible rules ob-
tained by the translation of this conflicting kind of de-
faults will not interfere with the arguments supported
by meaningful defaults.

5.3 Answers and Extensions

It is interesting to note that the relation established in
this work associates types of consequences (skeptical
or credulous) from a Default theory with the answers
(YES, NO, UNDECIDED) given by a DELP∅ inter-
preter. However, the concept of extension, present in
Default Logic, is not clearly recognizable in DELP∅

and for this reason it is not possible, without an extra
analysis, to identify the notion of extension in the de-
feasible program obtained by the translation. For in-
stance, if two literals areUNDECIDED in a T DL

delp(T ),
they could belong to the same extension ofT , or
they could belong to different extensions. Hence,
the match between literals and extensions cannot be
recognized by DELP∅ by considering just the an-
swer given by the interpreter. An external mechanism
should be provided.

6 Conclusions

The transformation presented in this work allows to
map Default Theories to a special variant of DELP
(the simplest variant). In this way, default theories can
be modeled by simple de.l.p.’s and this result allow us
to extend this work to other formalisms, mainly over
those whose correspondence with Default Logic (of
some of its variants) have been already defined.

There are several works, in the field of Knowl-
edge Representation dedicated to relate different for-
malisms and semantics of nonmonotonic reasoning
formalisms [3, 5, 9, 7, 12, 13, 2, 8]. We think that
it is significant to carry out this work since, as men-
tioned before, it is important to asses the different al-
ternatives present in the area. There are very different
approaches for nonmonotonic reasoning and is use-
ful to clarify the relationship among them. However,
this task is not easy mainly because several dissimilar
approaches have been developed. This work presents
a first analysis on the relation between a well under-
stood nonmonotonic system as Reiter Default Logic,
and a argumentation based system like DELP. Many
works have been developed relating Default Logic,
or some of its variants, to other nonmonotonic for-
malisms [9, 7, 12].
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mocíon Cient́ıfica y Tecnoĺogica(PICT 13096, 15043,
and PAV 076) and theSecretaŕıa de Ciencia y Tec-
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