Inteligencia Artificial. Revista Iberoamericana

[ n de Inteligencia Artificial

Nexista Tberoamericena de Intelipracia Artificial ISSN: 1137-3601
revista@aepia.org
Asociacion Espafiola para la Inteligencia
Artificial
Espafia

Gomez-Meire, Silvana; Reboiro-Jato, Miguel; Fajardo, Carlos H.; Olivieri, David; Fdez-Riverola,
Florentino
A Robust Algorithm for Forming Note Complexes
Inteligencia Artificial. Revista Iberoamericana de Inteligencia Artificial, vol. 14, nam. 47, 2010, pp. 27-
37
Asociacion Espafiola para la Inteligencia Artificial
Valencia, Espafa

Available in: http://www.redalyc.org/articulo.0a?id=92513174003

How to cite [ f @\ /"
Complete issue Scientific Information System
More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal

Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative


http://www.redalyc.org/revista.oa?id=925
http://www.redalyc.org/articulo.oa?id=92513174003
http://www.redalyc.org/comocitar.oa?id=92513174003
http://www.redalyc.org/fasciculo.oa?id=925&numero=13174
http://www.redalyc.org/articulo.oa?id=92513174003
http://www.redalyc.org/revista.oa?id=925
http://www.redalyc.org

Inteligencia Artificial 47(2010), 27-37
doi: 10.4114/ia.v14i47.1565

INTELIGENCIA ARTIFICIAL

http://erevista.aepia.org/

A Robust Algorithm for Forming Note Complexes

Silvana Gomez-Meire, Miguel Reboiro-Jato, Carlos H. Fajardo, David Olivieri,
Florentino Fdez-Riverola

Department of Computer Sciencie

University of Vigo - Ourense (Spain)

{sgmeire,mrjato,cfajardo,dolivieri,riverola}@uvigo.es

Abstract We describe a new algorithm to transcribe musical note complexes from polyphonic piano music. Our
method is a spectrogram based algorithm, which uses a robust peak detection scheme and forms note complexes
by multiple sample conditional probability in the context of a time-frequency based finite state space approach,
where note onsets are determined implicitly by changes in subharmonics. This paper provides a brief summary
of some of the key algorithms in our method.

Keywords: Music transcription, note identification, signal analysis.

1 Introduction

The musical transcription is defined as the process by which, from hearing a musical piece it can be
possible to reconstruct the sequence of notes forming the score. In other words, it is to obtain a symbolic
representation of the piece that contains all the musical aspects of the same, in addition to identification
of the note, set the tone, rhythm and duration.

Given that the automatic musical transcription problem has profound complexity, we believe there are
several essential ingredients that algorithms addressing this problem must possess in order to be effective.
First a robust low-level analysis of the audio signal is the key to determining notes, since we believe that
the problem is data driven and well described by spectrogram based analysis. A second requirement is
that it should build up a solution by using all data available. This is particularly inspired by Brown and
Sterians [3] [6] view of multiple hypothesis.

A third requirement for musical transcription algorithms is that it should be effective for any instru-
ments. Thus, it must be able to determine note onsets for cases where abrupt transitions in the time
domain are not present. This requirement puts into question suggests that a more reliable algorithm
would be derived from the frequency domain or perhaps from other transform methods.

Finally, we believe that certain implementation issues are important, especially in allowing (1) possi-
bility for producing transcription in near real-time and (2) providing a framework which is extendible and
can easily incorporate new algorithms. Related to the first of these issues, our algorithm processes audio
file streams in blocks, and the finite state approach allows us to save note complexes in dynamic struc-
tures until they are complete. The second point is more difficult to demonstrate, however, we have used
standard C++ object oriented design methodology and have heavily relied upon STL data structures,
thus making the code portable and easily extendible for different algorithms [2].

Main Contributions of Paper: We describe a new set of algorithms for transcription of polyphonic
music. The method we present is based upon transitions between states, which represent note complexes.
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Since our method is a spectrogram method, we describe the low-level peak detection algorithm we devel-
oped, and the peak to note association algorithm. We also show how transitions from one state are based
upon a conditional probability so that decisions of whether a note belongs to a note complex is deferred
until more information is available. In this manner, we eliminate spurious signals and our method is
robustly determines groups of notes. Another aspect of our method is that the onset detection of notes
is done in the frequency domain, so that we are not confined to particular instruments such as the piano,
where the time domain signal provides sharp transitions between notes.

2 Foundations

In almost all algorithms reported in the literature for music transcription, there exist several common
themes, particularly: (1) either a (short-time) fourier and/or wavelet transformation of the acoustic input
signal is performed, converting into the time-frequency or space-scale plane, (2) information from the
time-frequency is used to select peaks using some ad-hoc method, () onset detection is determined, and
(4) the association of partials is made to notes. The difference between the reported work is the way in
which each of these methods are implemented. Here we describe the details of the algorithms that we
have developed in performing these common steps.

Principle of Superposition: As is well accepted, and indeed implicit in all other methods [4], is the
principle of superposition. For a polyphonic instrument such as the piano, despite many complications
of sound production through the baseboard and inharmonicity effects, the problem produces stationary
eigenstates ([1], [5]) which add linearly to produce the full time domain signal.

2.1 Definitions and Time Scales

For the purpose of our discussion, there are several different time scales and concepts which we should
like to define carefully. First, the common well known concepts hold: (1) onset/offset times: time at
which a note begins/ends, (2) note ny, is related to the fundamental frequency of oscillation and all
the associated harmonics {wy} where w,, = nwy, and the fundamental wy is perceived as the pitch, (3)
timbre: acoustic attribute of a note, which in general is more important to synthesis than transcription,
as described.

Proper Sample Size: Before describing a note complex, it is interesting to describe the different
time scales and sampling scales of interest. First, the sampling rate is 44.1 KHz, with a sampling interval,
which we call the proper sample, of the distribution approximately 2.5 ms, however is a value that we can
adjust. The sampling rate is sufficient to assure that we are free from aliasing effects. The STFT was
defined with a Chebyshev window with 100dB of sidelobe attenuation. The spectral neighborhood size
for computing refined partial power and frequency estimates was chosen to be 5points, and representing
a bandwidth of 13.5Hz.

The implementation of the algorithm is intimately tied to the proper sample time scale, as we can see in
figure 1, since it is about this size that we apply the entire algorithm. We make frequency transformation
and perform peak detection, note association and determination of note complexes. Furthermore, each
proper sample contains some points of the previous proper sample, following the principle of superposition,
in order to avoid loss of information.

Definition 1 (Note Complex) We define a note complex, G5 = Gg(t1 -+ tg|{n1, - -nr}) as the set of

notes n(k)(ti,tf) € G, which are voiced during the time frame At,, or equivalently from sample k to

J
(k)

k+ 7. Furthermore, the notes n;"” (t;,ty) have onset/offset times t; and ty during the time interval At

Finite State or Note Complex Scale: The note complex, G in our definition, is the exact
equivalent to our definition of a finite state, or what we call the transcription state S which is the present
state of the transition. Figure 2 shows the transitions from a state representing the present note complex
G(tr) — G(tktr+1), with conditional 2-state probability P(Gx|Griri1)-

In summary, the time scales for our algorithm are: (1) the proper sample size Aty, (2) onsets/offsets

(s)

(ti,tf) times for individual note n;” in a note complex G (ty, - - - tx+-), and (3) time between note complex
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Figure 1: Three proper sample that shows the superposition between them.

PG| G)

/ 2 3
Figure 2: Finite state showing transitions probability P(Gs|Gs4+1) from note complex G5 to Gs1.

transitions G — Gsy1. We shall describe in subsequent sections how these are important in algorithms
definition.

2.2 Data Association and Inference

As described, an important time scale in the problem is given by the proper sample boundary, since
it is granularity of note resolution. Moreover, at each evaluation we obtain peaks and perform a data
association for obtaining notes. Information from the previous proper sample to decide to include or
exclude a potential note in Gj.

3 The Algorithms and Implementation

As is the case in many musical transcription systems, Figure 3, the basic building blocks are: (1) the
low-level signal analysis, or front-end processing, (2) the subharmonic association or note analysis phase,
and (3) the backend notation and transcription phase.

In the first block, the first issue to do is reading the audio (.wav) file and getting preparing the number
of points in the sample. The FrontEnd block is responsible for obtaining a list of reliable peaks, and the
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Signal Analysis . Transcription
Note Analysis
(Front-end) ¥ (Back-end)
» { Frequencies List} » {Note Groups}

Figure 3: Musical Transcription System.

function Note Analysis contains all the algorithms for associating peaks to notes, which are determined
from rules based upon prior samples. Each of these blocks shall now be described in subsequent sections.

3.1 Low-level Signal Analysis

We have found that the low level signal analysis is responsible for obtaining robust transcription results
in subsequent algorithms in the system. The specific parameters of our front-end system, implemented
with the FFTw library, are: (a) a timeslice window of approximately 2.5 ms gives good overall results for
even fast notes, (b) the windowed STFT chosen is a Chebyshev, with 100dB sidelobe attenuation, and
(c) accurate threshold based peak detection to nearly 5kHz.

Peak Threshold function For obtaining the peaks, we developed an ad-hoc thresholding algorithm,
which consists of: (a) a moving average M and (b) a nonlinear fitting function F to adjust for the
background power level across a large frequency range. Thus, once the full threshold curve T'(w) = M+F
is obtained, the peaks are identified as those points greater than T'(w).

The background power spectrum: We know from physics, that the power spectrum always has
the form: P(w) = ap + (a1 * w)exp(—az2 * w) Thus, we can model very well both the low and high
frequency background if we could fit this function to the actual spectrum. Our procedure consist in
obtaining the constants a; in the above formula by using the well known Levenberg Marquadt nonlinear
fitting algorithm. So that the algorithm converges to appropriate values for a;, we have chosen initial
guesses by simple pre-calculations directly from the power spectrum P(w). We have found that it is more
important that the fit accurate at high frequency, so we have payed special attention to heavily weight
the initial guesses by the average value of the asymptotic power spectrum, so we set ag ~ ZkN: Nem | Ek|-

The moving average: The moving average provides an excellent centered average the function. A
simple way of writing the moving average at point z; is Z; = 1/(2p+1) Ef;’;w xi. After experimenting
with several orders of the moving average, we found that the 5-point and 7-point averages give the best
results, while higher order tend to be far too slowly varying.

Finally, it is necessary to eliminate adjacent points. The algorithm is a standard linked list operation,
which consists of bracketing the adjacent nodes, finding the maximum value within the bracketed set,
and eliminating all but the maximum. A typical example of the peak detection algorithm is shown in
Figure 4. The result of these algorithms is to produce the list (set): F = {po, - ,Pn}-

3.2 Peaks/Note Association Algorithms

Once the set of peaks Fj are obtained from the power spectrum of proper sample k, we must associate
these peaks to subharmonics of notes n;, which may eventually make up a note complex G,. In peak/note
association, the frequency of each peak w; is tested against every other w, € F in order to determine
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Figure 4: Example power spectrum for peak detection.

if the relation w,, = nw;. Once a complete enumeration of all such groupings of multiples is performed,
the fundamental frequency is determined, and hence the note n; through the linear relation n(w) ~
2/log(2)log(w/440).

The note association is greatly reduced by starting with a subset of potential candidate peaks C. A
simple selection method is to search through the list of all frequencies in Fi, = {(wo, ao), - * - (wn, an)} with
associated amplitudes a; and choose the set of w;, for j < n where the relative amplitude is greater than
a predetermined threshold a;f = a;j/Amaz > a¢. It should be mentioned that this simple selection criteria
works fairly well for piano music but has not been fully tested for other instruments which may exhibit
missing fundamentals w,.

Definition 2 (Candidates List Cy) A subset of notes obtained from the original set of spectrum peaks,
F. The selection is a dynamic programming technique which eliminates all other possible combinations
and only selects optimal candidates. Subsequent iterations will only consider these candidate peaks as
starting points for constructing notes.

Once the candidate list C}, is obtained, we use this list as potential fundamental frequencies wq ; for
notes n; and enumerate through the entire list Fj looking for multiples of it in a similar manner as
described, with w, = nwy ; £ dw, where in practice we allow for a radius of error éw. The resulting list
is referred to as the Preliminary list Py, because there may be apparent notes n; constructed from the
association process which are really spurious or accidental signals. We formalize the definition of the
preliminary list in the following way:

Definition 3 (Preliminary List Py) A subset of notes, at sample k, obtained from peak to note asso-
ciation. This list contains potential notes which must be verified by examining conditional probabilities of
previous preliminary lists from the k — 1 sample, Pr_1. We calculate the conditional probability for the
j—th note n? € P, by observing the set of features 6.

Definition 4 (The Feature Vector 6) Observable parameters for each note ng-k) that we obtain from
the kth sample, that include power spectrum properties, number and distribution of subharmonics, energy
values and specific amplitude information. These parameters are used for calculating transition probabil-
ities.
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3.2.1 Parameters

The parameters 6 of the note make a reference to physical observable values between the subharmonics.
These values are easily calculated from information we obtain from the spectrum of the sample.

- SPECTRUM VALUES: (a) Note value (n,), which is the integer value of the note and the frequency
using fitted model n(f) = ag log(ay f/440), with constants ag = 30.26 and a; = 0.99, (b) the sample
number and time (s, tx), which is the proper sample number and the time, (¢) Amplitude and
frequency (af, f{) of note n, in the note complex C, (d) the number of harmonics (N3) for note
n,.

- ENERGY DERIVED VALUES: (a) Ef, the total energy obtained by summing amplitude of the sub-
harmonics, Ef = Y, |af|? for note n,, (b) energy of the fundamental and of the maximum are
Ef, = lagol? and BY, . = |afmaz|? respectively, (c) the relative energy is given by Ef = Ef / Efma,
and (d) the gradient of the total energy, VE; is used to test for the onset repeated notes.

- DISTRIBUTION OF SUBHARMONICS: An important heuristic for associating notes to note complexes
is based upon the distribution of absent harmonics. There are three quantities of this type which are
of interest: (a) the total number ng = ", ¢k, n of missing harmonics (considered in a consecutive
series), (b) individual structure functions £, where we define

1k <k<k
0 otherwise

Np
&i(k) = drH(k; — ki) = { 1
k

and (c¢) a weighted distribution 74, given through the definition: 7y = kae{m} w(k)kp, with
km € {¢r} and w(k) = exp(—\ * k)

Upon low-level processing of the subsequent sample k + 1, we perform an update step. In particular,
we rely upon the transition probability matrix Ry between the preliminary lists Py_; and Pj.

Definition 5 (Transitional Probabilities) Given a set of preliminary notes, Py, = {nk,nk ... ,né‘}
obtained from the proper sample k and its immediate predecessor Py_1 = {n’ffl,n’;*l, e ,n?il}, where
nf = n?({@l}) is the j-th note in the k sample and depends upon the observable parameters {6;}, we

define the matrixz Ry of conditional probabilities:

Ry = { (nf@Int =), oy (n?<9>‘"§71(9)} .

The elements r; ; of this matrix are formed by considering {6;}, of each n;ﬂ depend on the value of
this parameter and the previous sample.

_ Inf({0:) = nf T ({6}
ma.x(’n? , 'n?'H)

vy (nf ({0 1 ({0.}) = 1 3)

3.2.2 Heuristic Decision Rules

Given the subset of parameters of the preliminary note p;, and the associated conditional probabilities
rj, we define a series fo generic heuristic rules that will permit us to determine the note and whether they
can form a part of the Ay list. Table 1 shows the parameters and nominal rules empirically determined,
for harmonic distribution and energy determination.

The last case shows two special cases which pose ambiguities if not careful: (1) case of determining
octaves: where we have found that fourth harmonic must obey the condition a4 > 0.5a¢, which unam-
biguously determines the correct octave, and (2) case of repeated notes: since our method is based upon
the idea that onsets are determined by changes in the set of harmonics, we need to observer VE > 0 and
T(Et) 2 0.

The subset of notes from the preliminary list P which have been confirmed from the probabilities of
Ry, are then promoted to the Best note list, or the Ay list. We define this list in the following manner:
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Table 1: Empirically determined Heuristic Rules for inclusion in Ay.

’ Type

‘ Parameters

‘ Nominal Rule

|

Harmonic Dist.

Card(N;) > NV
cond. prob. r(Np)
§2(k)

r(&2(k))

Mg

(1)

N, }(Lopt) = 6 nominal
r(Ny) > 0.75

&2(k) <1

r(&a(k)) > 0.5

ng < 10

r(ng) =2 0.7

Energy

Tot.rel. E,(n;) = %;::
cond. prob. r(E,)
VE

Octaves

Repeated notes

ECPY > 0.9

r(E,) > 0.4

(VE)

a4 > O.5a0

VE >0, r(E)>03

Definition 6 (a-List or Best Note List (A;)) The set of notes {n,}, that form the list R, -the best
notes in the actual proper sample-, obtained from Py which have been selected by decision rules based
upon the list Ry, that contain the best notes in the actual proper sample. Furthermore, the notes {n,}
constitutes a subset of the note complexr G5 during sample k.

Operationally, the notes in Ay, are considered notes and their timing information is saved for back-end
processing. It is necessary to update the a-List from the decision rules and selecting the notes n, from
Py, which will be promoted to Ag. As indicated in the definition, Ay list represents all the notes in the
note complex G during time Aty, so G4(Atg) = Ag. At k+ 1 more notes can enter into Gj.

Mathematically, the state of A for sample k is obtained from the function Ay = Ax(Ak—1, Rk, Ri).
In particular, we can write the state equation for Ay in terms of the quantity Ry, which is the result list
of the heuristic decision rule.

Ax_1 Uk  card(Rg) > card(Ri—1)
where k = R — Ax_1
Ax_1 — k' otherwise
where k' = Ax_1 — Ry

Ay = (4)

The transition from a note complex G to Gsy1 corresponds to the list A = (), that is there are no
valid notes present in the signal (when an onset takes place). All the notes in G, that were voiced can
now be written to the back-end processor. We have used an additional list, referred to as the By, list, for
temporarily storing these notes n, € G, and their associated onset/offset times ¢; and ¢ respectively.

Definition 7 (Back-end By List) A temporary storage list which contains the entire note group which
exists during a time At. It is what gets passed to the back-end processor for writing out a musical score.

Ax_1=0

0
By = 5
N {(Ak,l — Ax) UBx_1 otherwise ®)

Once the note complex is written to By, the full back-end stage is called for writing the musical notation,
which in our case is done by hand-crafted scripts for GNU Lilypond.

3.3 Algorithm Operation

A demonstration of the algorithm for a hypothetical case useful to demonstrate the steps. Consider the
following definitions: (a) an individual note nl(-j ), as before, is represented with two indices, ¢ and j, where
j is the note complex, and ¢ is an indices counting the number of notes which enter the alpha queue,

(but may not necessarily be a final note), (b) the time tj is the fundamental time tick; it is the absolute
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time in the segment measured in the middle of the proper sample, and (¢) (At); is the duration of a note
group, while At; is the duration of an individual note.

Table 2 shows a hypothetical sequence of samples and the associated detected notes with the state of
each of the queues in the algorithm described above.

Table 2: State of the Queues..
time \ Prelim.Note \ Lists A;,By

th {n1,nz,n3} Ay ={nz2} ,B1 = {}

to {n1,n2,n3,n4} | Az = {ng,n3}, Bo ={}

tg {1’12,1’13} Ag = {ng,ng}, BQ = {}

t4 {ng,ng,ns,nﬁ} A4 = {ng,ng}, 32 = {}

ts {ns,ng} As = {}, Bs = {na(t1,ta)
n3(t,ta)}

t5 {1’15,1’16} A5 = {’n{,,TLG}, Bs = {}

tG {n5,n6} A(; = {17,5,716}, BG = {}

t7 {n67n7} A7 = {Tl6}, B7 = {n5(t5,t7)}

tg {ng,n7,ng} Ag = {ng,n7}, Bs = {ns(ts,t7)}

tg {ng,nz,ng} Ay = {ng,n7}, By = {ns(ts,t7)}

1o i {} {ns(ts, t7),
ne(ts, o), n7(ts, to)}

The following is a short description of a typical situation of how the algorithm works.

- time t1: from the frequencies and from the subharmonic grouping, three potential notes are placed
into the preliminary list. Imagine that of these three notes, ny has a low probability, determined
by the number of subharmonics pertaining to it; notes ny and ng have a high probability of being
real notes, yet only ny has a sufficiently high probability for entering into the Ay list directly, so it
is copied into the Aj list.

- time tg; probability of my is the same, however the note no and ng are confirmed by previous
observations; also another note ny is a potential candidate and must wait for further samples before
entering into Ay.

- time t3: n4 does not appear so is eliminated.

- time t4: change of notes; some energy of no and ng is present but weak compared to ns and ng;
algorithm defers decision to include in Ay.

- time ts: A is emptied and its contents are copied to the By list; note complex has concluded
and can be written; preliminary note list P contains notes ns and ng. Since they were present
previously, they enter the Ay complex.

- time tg: n5 and ng appear again, so they remain in Ay list.

- time t7: note ns disappears from Py, and it so it gets subtracted from Ay list and gets written to
By, with onset ¢5 and offset time ¢7.

- time tg: note ny is confirmed and written to Ag; the note ng enters into P, with low probability
since it has few subharmonics a low amplitude fundamental; a decision for inserting ng into Ay, is
deferred until the next sample.

- time tg: the decision defer ng into Ay, is justified since it is no longer present; the note ng appears
but not yet included into Ay.

- time t19: all notes disappear, since there are no observed subharmonics; the condition A, = 0
signals writing all contents to By and calling the backend processor. The list contains the full note
complex G5 = {ns, ng, n7} with the onset/offset times indicated in the table.
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What is not shown here are numbers indicating how the decisions are actually made to include notes in
Ay which come from Pj. This is the subject of the next subsection.

3.4 Results

A real example, Figure 5, is describing using the next tables. The audio sample has been recording with

a Yamaha electric piano.

Figure 5: Musical segment example.

The first table, Table 3 show the functioning of the front-end of the algorithm. It shows the couple
frequency/amplitude for the first group of notes, the number of subharmonic, and the present notes.

Table 3: Example of a samples and frequency/amplitude for the first four harmonics.
Sample | Note Subharmonic

(an) (Nh) (f7 a’)

69 (0) -9 (23) | {(266,444)(524,1005)(790,109)(1048,290)}
69 (1) 3 (11) | {(524,1005)(990,154)(1579,199)(1995,98)}
69 (2) 7(9) {(660,558)(1313,125)(1845,117)(2512,7)}

7 (0) -5.(24) {(330, 328) (660, 884)(990, 230)(1313, 102) }
77 (1) | 3(18) | {(524,1600)(990,230)(1579,297)(1995,151)}
77(2) | 7 (18) | {(660,884)(1313,102)(1845,71)(2577,7)}

In Table 4, you can see the diferent values from the observable parameters that we use for forming
the R-matrix. We can see the probabilities in Table 5 .

Table 4: Representative samples for the observable parameters.
ns [n, [ f7 [No [BEe | B [ng [ns | (61:68)]

69 | -9 | 266 | 23 | 2510 | 444 | O 0 (0, 0,0)
69 | 3 524 | 11 | 1482 | 1005 | 4 79 | (0,0,4)
69 | 7 660 | 9 827 | 558 | 5 10.5 | (0, 2, 3)
72 | -9 | 258 | 12 | 1573 | 259 |7 11.7 ] (0,0, 7)
72 |3 524 | 10 | 1082 | 761 | 4 8.1 | (0,1, 3)
27 660 | 8 425 219 |7 15.3 | (0, 4, 3)

Finally, Table 6 shows the time sample, the preliminary lists and A; and By list as described through-
out the paper.
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Table 5: Example of matrix elements of R.

ns | r(f]) | r(Nn) | 7(Ep), r(ng), r(&1), r(VE)
r(Ey) (1) r(€2), 7(&3)

69 |9 |1 05,05) | (4L, 1) 1,1 1170
69 |3 0.9 | (04,04) | (0.7,0.7) | (1,1,0.75) | 760
69 | 7 0.9 | (0.4,04) | (08 0.7) | (1,05, 1) | 438

72 -0 106 | (0.6,06) (08 07) | (L, L08) |-912
2 |3 0.8 | (0.6,06) | (0.7,0.7) | (1,0,1) | -633
72 |7 06 | (04,03) | (02,02) | (1,0,06) | 4%

Table 6: Example of status of the major lists for note complexes.
[ts | Pea | P [ A, ] By, ‘

68 | { {-9,-1,3,7} {} {}

69 | {-9,-1,3,7} | {-9,3,7} {-9,3,7} {}

70 | {-9,3,7} {-9,3,7} {-9,3,7} {}

75 { 9,3,7} {3,7} {3,7} {-9}

77 { :77 5} {_57377} {_57377} {_9}

82 { ) 77} {75} {} {79,773775}
83 { 5} {-9.3,7} {=9.3,7} {}

4 Conclusions

Our method for constructing note complexes accurately identifies notes from the association of peaks
to notes and using deferred decision making based upon conditional probabilities of physical observable
between samples.

It is interesting to emphasize that for the determination of the notes included in a segment, we only
analyze the information of the present proper sample and some data of the previous one. Also, the
probability matrix definition to calculate the heuristic values of each note becomes of great utility to take
decisions. All parameters can be observed in the frequency domain. It means that it is easy to apply the
method to another instruments with the only condition of knowing the unique profile of each one.

On the other hand, we can obtain an accuracy between the 70% for complex polyphonic samples
and 98% for the simplest ones. These results establish our method on the level of success obtained with
another research works. Furthermore, we can solve with some success simple cases of determining octaves
and repeated notes problems. Although, it is necessary to keep working in it.

A relevant aspect for us in order to continue our work is to implement adaptive own samples inspired
by the concept of adaptive meshes of finite element. The idea is to increase the sample size for segments
with very long notes in the timeline, reducing it for those segments with short notes.

According with the situation aforementioned, the main idea with the proposed ensemble forecasting
aproach is to use a two steps algorithm implementation that, in a first approximation, analyze the energy
of the time domain signal contour and then decide when to vary the proper sample size for later frequency
analysis.
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