Cardozo, Eduardo; Vielma, Joel E.; Fontal, Bernardo; Contreras, Ricardo R.; Reyes, Marisela; Bellandi, Fernando; Fonseca, Yuraima; Romero, Victoria

Synthesis, characterization and hydrogenation catalysis in biphasic medium (organic/water) of samarium (III) complex with glycine and 2,2-bipyridine ligands

Avances en Química, vol. 10, 2015, pp. 21-24
Universidad de los Andes
Mérida, Venezuela

Available in: http://www.redalyc.org/articulo.oa?id=93343104004
Synthesis, characterization and hydrogenation catalysis in biphasic medium (organic/water) of samarium (III) complex with glycine and 2,2-bipyridine ligands

Eduardo Cardozo*, Joel E. Vielma, Bernardo Fontal, Ricardo R. Contreras, Marisela Reyes, Fernando Bellandi, Yuraima Fonseca, Victoria Romero.

Laboratorio de Organometálicos. Departamento de Química. Facultad de Ciencias. Universidad de Los Andes. Mérida 5101, Venezuela

(*) ecardozo@ula.ve

Recibido: 22/06/2015 Revisado: 25/08/2015 Aceptado: 01/09/2015

Abstract

Sm(bipy)(glycine), [bipy = 2,2-bipyridine] was synthesized by classic, microwave and mechanical methods. UV-Vis reveals a strong signal near 190 nm corresponding to a high energy Sm-O bond and f→f transitions. FT-IR spectra show a band between 490 - 450 cm⁻¹ indicative of a Sm-O bond. TGA-DTA and MS analytical analysis, confirm the structural proposals. The samarium (III) complex was tested in 1-hexene hydrogenation, in biphasic media (cyclohexane/water) and the reaction parameters were optimized (time, temperature, substrate/catalyst ratio and H₂ pressure). Catalyst showed 37.5 % conversion.

Keywords: Catalysis; Hydrogenation; Samarium complex; Rare earth.

Introduction

The number of studies with rare earth complexes has increased rapidly on the last ten years, due to their wide capabilities as photon receptors via antenna effects¹. On the other hand, lanthanides complexes have shown catalytic activity in olefin hydrogenation², moreover they can be used in asymmetric catalysis with high selectivity³.

Today, microwave synthesis is widely studied and it is consistent with green chemistry principles⁴. In this paper, alternative synthesis methods are used in order to reduce environmental impact caused by traditional methods. Sm(bipy)(glycine), was characterized using UV-Vis, FT-IR, TGA-DTA, MS and studied in a hydrogenation reaction using a biphasic system (cyclohexane/water).

Measurement of samarium complex properties and catalytic studies

UV/Vis spectra were recorded on a Shimadzu Mini 1240 UV/Vis Spectrophotometer on 1x10⁻⁴ M aqueous solutions. FT-IR spectra were measured with a PE Spectrum RXI on KBr pellets 5 % w/w. MS data were obtained from a HP GCMS 5988A. TGA/DTA measurements were acquired using a TA INSTRUMENTS SDT–Q600. Catalytic trial analysis was recorded on a Perkin-Elmer Autosystem 900 GC with an methyl silicone capillary column Quadrex (50 m long and 0.52 μm diameter).

Preparation of samarium (III) complex Sm(bipy)(glycine)

Amino acid (glycine) and bipy were added on 3:1 molar ratio to 70 % ethanolic solution (30 mL) and heated to 74 °C (reflux temperature). Samarium acetate was added to the mixture and stirred for 24 hours. The resulting solution was vacuum evaporated. A solid precipitated was washed three times with acetone (5 mL), dried and stored in a dark glassware without light exposure. Reaction yield was 62.4 %.
Microwave synthesis was carried out mixing the same molar ratio and quantities described above on 10 mL of ethanol 99%. Eight pulses of 15 seconds were applied on a PANASONIC Household Microwave @ 60% of nominal power (1200 W) leaving a 5 seconds of relaxation time between pulses completing a total time of 160 seconds. The solid produced was washed three times with acetone (5 mL), dried and stored in dark glassware without light exposure. Reaction yield was 35.6%.

Mechano-chemical synthesis consists in accurately mixing the molar ratio and adding drop-wise 5 mL of ethanol 99%. After crushing the mixture for 30 minutes, the solid produced was washed three times with acetone (5 mL), dried and stored on dark glassware without light exposure. Reaction yield was 12.8%.

Catalytic trials

The catalytic reactions were performed on 10 mL Parr Instruments batch reactors. The temperature was provided by vertical heating ovens and monitored by PID temperature controllers and type K thermocouples. The reactions were performed as follows: 2.5 mL of cyclohexane and 2.5 mL of water were added in the reactor jacket, then 0.0050 g of samarium (III) catalyst was added and 1-hexene substrate according to substrate/catalyst ratio required; The reactor was closed and charged with appropriate H₂ pressure, and the reactor was placed into the heating oven. Initial time starts just before the reaction reached the temperature set up on the controller.

Results and discussion

Synthetic methods

Sm(bipy)(glycine)₃ was prepared by three different methods (classical, microwave and mechano-chemical synthesis). Classical synthesis showed overall best reaction yield (62.4%), however the time used by microwave synthesis (160 seconds) and the use of less quantity of solvent makes this synthesis method more promising in the development of green chemistry.

Uv/vis spectra

The shape and intensity of the peaks on the complexes mainly depends on the ligands⁶. Characteristic absorption of bipy in 202, 233, 283 nm can be appreciated in figure 1. The spectra show a blue shift evidencing coordination of two nitrogen atoms with the metal ion and a benzene conjugation decrease.

FT-IR spectra

Figure 2 shows the IR spectra of the non-coordinated glycine (a) and bipy (b) in which it is possible to observe the most important characteristic bands at 2898, 1612 and 1412 cm⁻¹ corresponding to νNH₃, νasCOO⁻ and νsCOO⁻ respectively to glycine and νC=C in 1580 cm⁻¹ and νC=N in 1454 cm⁻¹ to bipy. In the figure 2(c), IR spectra of Sm(bipy)(glycine)₃ showed all characteristics bands of ligands glycine and bipy with a shift of the following bands: νasCOO⁻, νsCOO⁻ and νC=N leading to guess an effective coordination of both ligands.
Mass spectrometry

Taking into account the preliminary structures of complexes and the obtained mass spectra, there is a good agreement with the initial structural proposals due to a molecular ion (P⁺) observed and fragments due to loss of ligands. This allow the proposal of a fragmentation pattern for the structure of Sm(bipy)(glycine)₃, (see table 1 and figure 3 below).

Table 1: Main peaks (uma) observed for the complex Sm(bipy)(glycine)₃.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sm(bipy)(glycine)₃</td>
<td></td>
</tr>
<tr>
<td>P⁺</td>
<td>708.55</td>
</tr>
<tr>
<td>P⁺-(glycine)</td>
<td>633.20</td>
</tr>
<tr>
<td>P⁺-2(glycine)</td>
<td>556.90</td>
</tr>
<tr>
<td>P⁺-3(glycine)</td>
<td>482.85</td>
</tr>
<tr>
<td>P⁺-3(OAc)</td>
<td>530.60</td>
</tr>
<tr>
<td>P⁺-(bipy)</td>
<td>551.95</td>
</tr>
</tbody>
</table>

Peaks observed on the MS spectra will vary in a range between ±1 uma and ±6 uma due to action of different isotope distributions/relative abundance on ligands ¹³C (1.11 %), ¹⁴⁴Sm (3.07 %), ¹⁴⁷Sm (14.99 %); ¹⁴⁸Sm (11.24 %), ¹⁴⁹Sm (13.82 %); ¹⁵⁰Sm (7.38 %); ¹⁵²Sm (26.75 %); ¹⁵⁴Sm (22.75 %). Table 2 indicates the fragment losses and figure 3 shows a fragmentation pattern.

Table 2: Mass loss and hydration water on the samarium (III) complex.

<table>
<thead>
<tr>
<th>% W</th>
<th>T (°C)</th>
<th>Fragment</th>
<th>% W remaining</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.660</td>
<td>85.94</td>
<td>4 H₂O</td>
<td>36.029</td>
</tr>
<tr>
<td>53.311</td>
<td>156.26</td>
<td>Organic</td>
<td></td>
</tr>
</tbody>
</table>

TGA-DTA analysis

The weight losses of these compounds exhibited a good agreement with the stoichiometry. There are two main steps when complexes being heated. The first one corresponds to crystal water loss on the complex accompanied by an endothermic process. The second one refers to a decomposition of the anhydrous complexes to oxides accompanied by an exothermic process with one, and two peaks.

Catalytic trials

Sm(bipy)(glycine)₃ was tested in hydrogenation reactions in a biphasic system (cyclohexane/water) using 1-hexene as substrate. The conditions of reactions were optimized exploring the reactions under the following conditions: time = from 12 to 72 h; temperature = from 125 to 225 °C; substrate/catalyst ratio = from 50:1 to 400:1 and H₂ pressure = from 400 to 1.200 psi. The optimal parameters were: time = 24 h, temperature = 175 °C, substrate/catalyst ratio = 100:1 and H₂ pressure = 1000 psi. Under optimal conditions, a 37.5 % maximum conversion was obtained.

Fig. 3: Fragmentation pattern for Sm(bipy)(glycine)₃ complex.
Conclusion

Sm(bipy)(glycine)$_3$ was successfully synthesized with three different methods showing the microwave synthesis like a promising alternative for development of green chemistry due to low cost and low environmental impact. UV, IR, MS, and TGA-DTA technics reveals good agreement with initial stoichiometry proposal, showing an effective bonding between O and N donors and Sm(III) metal ion. Under moderate conditions Sm(bipy)(glycine)$_3$ showed moderate activity in 1-hexene hydrogenation in a biphasic system (cyclohexane/water) with a maximum conversion of 37.5%.

Acknowledgement

We thank CDCHTA-ULA (Proy C-1945-15-08-B) for financial support.

References

 (f) Z Piskula, J Czajka, K Staninski, S Lis. Luminescence properties of calcium tungstate activated by lanthanide (III) ions. J. Rare Earths, 32(3), 221–225 (2014).

6. Y Hui, H Qizhuang, Y Jing, Z Wenjie. Syntheses, characterization and antibacterial properties of rare earths (Ce$^{3+}$, Pr$^{3+}$, Nd$^{3+}$, Sm$^{3+}$, Er$^{3+}$) complexes with L-aspartic acid and o-phenanthroline. J. Rare Earths, 24(1), 4-8 (2006).