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ABSTRACT

Reliable information of the three-di-
mensional distribution of rock mass
properties improves the design of se-
cure and cost-effective civil structures.
In this paper, a recurrent neural ne-
twork is presented as an alternative to
predict the spatial variation of some
index properties of rock in sparsely
mstrumented media. The neural te-
chnique, from statistical learning mo-
dels, 1s used to approximate functions
that can depend on a large number
of inputs that are generally unknown.
From a reasonably simple neuronal
model of two inhomogeneous rock
volumes, the limited measured in-
formation is extrapolated and the
properties in the entire mass can be
estimated. Comparisons between
situ explorations versus the 3D-neuro-
nal definition confirm the potential
of the proposed method for charac-
terizing the properties of masses with
inhomogeneous properties. Such a
representation is useful for design of
economic realistic numerical mode-
lling of rock volumes, maximizing in-
formation while minimizing cost.

Keywords: spatial variation
analysis; index properties of
rock, artificial intelligence, back
propagation, recurrent neural
networks.

RESUMEN

La informacion confiable de la distribucion
tridimensional de las propiedades del ma-
ctzo rocoso mejora el disefio de estructuras
ciiles seguras y rentables. En este traba-
Jo, se presenta una red neuronal recurren-
le como una alternativa para predecir la
variacion espacial de algunas propieda-
des indice de roca en medios escasamente
istrumentados. La técnica neuronal, que
Jorma parte de los modelos de aprendiza-

Je estadistico, se utiliza para aproximar

Junciones que pueden depender de un gran
niimero de entradas y que generalmente son
desconocidas. Con un modelo neuronal, ra-
zonablemente simple, de dos voliimenes de
roca no homogéneos, se extrapola la escasa
imformacion levantada en campo y se esti-
man las propiedades en toda la masa. Las
comparaciones entre la exploracion i situ
y la definicion neuro-3D confirma el po-
lencial del método propuesto para la carac-
lerizacion de propiedades de las masas con
propiedades no homogéneas. Esta represen-
tacion es util para el modelado numérico
realista y econdmico de voliimenes de roca,
maximizando la informacion mientras se
reducen los costos.

Palabras clave: analisis de va-
riacion espacial; propiedades
indice de rocas, inteligencia
artificial, retro-propagacion,
redes neuronales recurrentes.
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1. Introduction

In recent years, the assessment of the spatial vari-
ation of properties of rock masses has caught the
attention of many researchers (eg. Lashkaripour
and Ghafoori, 2002; Ghobadi ¢ al., 2005; Kocbay
and Kilic, 2006; Ghafoori et al., 2011; Uromeihy
and Farrokhi, 2012). The relationship between
rock-mass attributes and the distribution of poten-
tially unstable areas, observed in the models, raises
a concern. More refined modelling approaches are
conducted on the basis of rock properties as design
parameters to define crucial behaviours. Since the
quality of prediction is affected by the accuracy of
the data, there is demand for more fidelity when
estimating 3D properties used in modelling.

In this paper, a new methodology for determining
3D properties of rock masses, a neural network
(NN), particularly a recurrent neural network
(RNN), is presented. NNs are trained with ex-
amples of the concepts they are trying to capture
and internally organize themselves to be able to
reconstruct the presented examples. NNs have the
ability to produce correct, or nearly correct, re-
sponses when presented with partially incorrect or
incomplete input data (stzmuli). They also are able
to generalize rules from the cases on which they
are trained and apply these rules to new stimuli.
The main attributes of neural networks are their
robustness to noise data and their ability to gener-
alize to new input; in other words, a trained net-
work is capable of providing sensible output when
presented with input data that have not been used
during training, even if these data contain random
noise.

The geological and geotechnical analyses per-
formed on a dam site (both abutments) are used to
present the procedure for attaining a neuro-evalu-
ation of some index properties of rock masses. The
neural frame permits us to build on 3D displays of
mass descriptors: rock quality designation (RQD),
core recovery (%REC), number and inclination of
fractures (HFRAC and °FRAC respectively) and
material type (MT). Based on the information
given in this paper, NNs are shown as able to pre-

dict with good approximation the spatial variation
of rock properties. Because of their simplicity and
demand of computational resources, NNs seems
very useful particularly when extensive explorato-
ry campaigns are prohibitive or not available, such
as the dam example that is shown.

2. Basics of neural networks

The scope of this section is to make a brief induc-
tion to Artificial Neural Networks (or just Neural
Networks NNs), much of the formality is skipped
for the sake of simplicity. Detailed explanations
and demonstrations can be found in Cybenko
(1989), Hornik (1991), Hassoun (1995), Haykin
(1999) and Csaji (2001).

Since the first neural model by McCulloch and
Pitts (1943), hundreds of different models have
been developed. Given that the function of NNs
is to process information, they are used mainly
in fields related to this topic. The wide variety of
NNs used for engineering purposes works mainly
in pattern recognition, forecasting, and data com-
pression.

A NN is characterized by two main components: a
set of nodes, and the connections between nodes.
The nodes can be seen as computational units that
receive external information (inputs) and process it
to obtain an answer (output), this processing might
be very simple (such as summing the inputs), or
quite complex (a node might be another network
itself). The connections (weights) determine the in-
formation flow between nodes. They can be unidi-
rectional, when the information flows only in one
sense, and bidirectional, when the information
flows in either sense.

The interactions of nodes through the connections
lead to a global behaviour of the network that is
conceived as emergent “knowledge”. Inspired by
biological neurons (Figure 1), nodes, or artificial
neurons, collect signals through connections as the
synapses located on the dendrites or membrane
of the organic neuron. When the signals received
are strong enough (beyond a certain threshold)
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Biological neurons
a)
Output
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Axon Synapse
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Artificial Neural Network A processing element, neuron or node
b) c)

Biological and artificial neural networks, x, are the inputs, w, are the weights, I, is the identity matrix, o, is the bias, f(-) is
the transfer function and y, is the network output.

the neuron is activated and sends out a signal
through the axon to another synapse and might
activate other neurons. The higher the connec-
tions (weights) between neurons, the stronger the
influence of the nodes connected on the modelled
system.

By adjusting the weights the desired output of a
NN for specific inputs can be obtained in a process
that is known as learning or training. For NNs with
hundreds or thousands of neurons, it would be
quite complicated to find the required weights so it
is necessary to use algorithms which can, massive-
ly, adjust the NN weights based on desired outputs.
To become familiar with these NN concepts, see
the exercise shown in Figure 2. In this example a
layered network consisting of four artificial neu-
rons is depicted (two neurons receive inputs and
the other two present network outputs). The
weights, assigned with each arrow, represent infor-

mation flow. Consider that the neuron’s activities
are simply summing their inputs. Since the input
neurons have only one input, their output will be
the received input multiplied by a weight. The
neurons on the output layer receive the numbers
from both input neurons, multiply them by their
respective weights and sum these quantities.

Setting the weights equal to one means that the
information will flow unaffected, but changing
some critical weights the NN behaviour does dra-
matically. Perhaps it is not so complicated to adjust
the weights of such a small network, its capabili-
ties are quite limited. In a more skilled NN, hun-
dreds or thousands of neurons will be necessary to
execute the desired task and the methods to find
the weights will be more elaborated. A scheme to
discover weights by the training backpropagation
algorithm (Rumelhart and McClelland, 1986),
will be explained in the following subsection. It
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TN Quitput layer: transmits the
| calculations to the exterior or
oAt to another neuron

N\ Inputlayer: receives
i % ' information from the exterior

INPUTS

A simple example of a NN: two inputs, two outputs,
four weights.

is one of the most commonly used method suc-
cessful NN applications (Shahin e al., 2008; 2009;
Moreshwar, 2013) and it is the one used in this in-
vestigation.

. THE BACKPROPAGATION ALGORITHM

The backpropagation algorithm (BP) (Rumelhart
and McClelland, 1986) is used in layered feedfor-
ward NNs. This kind of networks is organized in
layers that send their signals forward. The infor-
mation is received from the exterior in the input
layer, the network final calculation is given in an
output layer, and the processing is developed in in-
termediate or hidden layers.

The BP algorithm uses supervised learning, which
means that the network modeller provides the al-
gorithm with examples of the inputs and their cor-
responding outputs (those that the network must
approximate). The objective of the backpropaga-
tion algorithm is to reduce the difference between
actual and expected results, and in doing so the
NN is said to be “learning” from the data (exam-
ples or “training” records). The procedure begins
with random weights and the goal is to adjust them
so that the error will be minimal.

The activation function of the neurons in NN im-
plementing the backpropagation algorithm is a
weighted sum (the sum of the inputs x; multiplied
by their respective weights w),):

n

A] (f, W) = Z XiWji
- m
As can be seen, the neuron activation depends
only on the inputs and the weights. If the output
function would be the identity (activation = out-
put) then the neuron would be called linear. But
these have severe limitations, the most common

output function is the sigmoidal function:

1

O =EW = aew
(2)

The sigmoidal function is very close to one for
large positive numbers, 0.5 at zero, and very close
to zero for large negative numbers. This allows a
smooth transition between the low and high out-
puts (close to zero or close to one). The goal of
the training process is to obtain a desired output
when certain inputs are given. Since the error is
the difference between the actual and the desired
output, the error depends on the weights, and we
need to adjust the weights in order to minimize the
error. In this investigation, the error function for
the output of each neuron is defined as:

E & w,d) = (0;(xw) - d,)’ 8
This error measure, always positive, is very con-
venient for the research purpose because it will
be greater if the difference is big, and lesser if the
difference is small. The error of the network will
simply be the sum of the errors of all the neurons
in the output layer:

- 2
E(x,w,d) = Z(oj(f, w) —d;)
J ()
In the BP algorithm once the output, inputs, and
weights are known the weights adjustment is per-
formed using the method of gradient descendent:
O0E
6Wji

Awj; = =1
5)
This formula can be interpreted as: the adjust-
ment of each weight (Aw,) will be the negative of
a constant eta (7) multiplied by the dependence of
the previous weight on the error of the network,
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which is the derivative of £ in respect to W The
size of the adjustment will depend on O and on
the contribution of the weight to the error of the
function. That is, if the weight contributes a large
amount to the error, the adjustment will be greater
than if it contributes a smaller amount. Equation
5 1s used until the appropriate weights are found
and the error is minimal. Mathematical proof of
the backpropagation algorithm can be found in
Werbos (1994), and Jeremias et al. (2014).
Now it is necessary to find the derivative of £ with
respect to w,, which is the basic purpose of the
BP algorithm. First, it is required to calculate how
much the error depends on the output, which is the
derivative of £ with respect to O, (from Equation
3).
6E
50 = 2(0,—d))
) ©)
and then, how much the output differs on the acti-
vation (from Equations 1 and 2):
ﬂ = % & = 0},(1 - Oj)xi

It can be seen that (from Equations 6 and 7):

O _ 8E 80, _ 0(1-0)

(8)
so the adjustment to each weight will be (from
Equations 5 and 8):

Equation (9) can be used for training a NN with
two layers. For developing a network with more
layers some considerations must be taken into ac-
count. To adjust the weights v, of a previous layer,
it is required first to calculate how the error de-
pends not on the weight, but in the input from the
previous layer, changing x; with w, in Equations (7),
(8), and (9):

O6FE 0E 6x;

Av:, = -n =-n
itk 6vik 6xl' 6vik (1())

where

— =2(0; — d;)0;(1 - 0;)wy,
(SWji ( ] ]) J( ]) Jt <11>

and assuming that there are inputs «, into the neu-
ron with v, (from Equation 7):

6xl-
6vik

= x;(1 = x)vy

12)
When adding more layers, the same procedure
is applied calculating how the error depends on
the inputs and weights of the previous layer. For
practical reasons, and the experience achieved
from more successful applications, NNs trained via
backpropagation algorithm do not have too many
layers, since the time for training the networks
grows exponentially.

2.2. RECURRENT NEURAL NETWORKS (RNN)

The standard feedforward NN, or multilayer per-
ceptron (MLP), is the best-known member of the
family of many types of neural networks (Haykin,
1999). Even though MLP has been successfully
applied in tasks of prediction and classification
(Egmont-Petersen et al., 2002; Theodoridis and
Koutroumbas, 2009). In this investigation, a re-
current neural network (RNN, or neural networks
for temporal processing) is used for extending the
feedforward networks with the capability of dy-
namic operation.

In a RNN the network behaviour depends not
only on the current input (as in normal feedfor-
ward networks) but also on previous operations of
the network. The RNN gains knowledge by recur-
rent connections where the neuron outputs are fed
back into the network as additional inputs (Graves,
2012). The fundamental feature of a RNN is that
the network contains at least one feedback connec-
tion, so that activation can flow around in a loop.
This enables the networks to perform temporal
processing and to learn sequences (eg, perform
sequence recognition/reproduction or temporal
association/prediction). The learning capability
of the network can be achieved by similar gradi-
ent descent procedures to those used to derive the

BASICS OF NEURAL NETWORKS
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backpropagation algorithm for feedforward net-
works (Hinton and Salakhutdinov, 2006).

The network consists of a static layer, which
generally has a higher number of neurons with
respect to the number of state variables of the sys-
tem to identify. The output from the static layer is
directed to an adder where it is subtracted from
the previous value of the variable <, identified by
the system. From this operation, the derivative of
cach of the ¢ state variables identified by the sys-
tem is generated. The dynamic recurrent multi-
layer network, the behaviour of which is described
in Equation (13), can identify the behaviour of an
autonomous system (¢« = 0) (Equation 14):

% z= f(z) =Ax + ©05(Tz)
(13)

and

= f)=Ax+fox
(14)
in which x, z€ER"™, A€ER™" f(x):R"—>R",
JF@):R"—=R"  @eR™N, T eRrmn,
o(z)=[o(z1), 0(23), ...0(Zp)], the transfer func-
tion o(8) = tansig(0), n is the number of state var-
iables of the system, N the number of neurons
in the hidden layer, and f(x) is the estimated f{x).
According to Haykin (1999), without loss of gen-
erality, if the source is assumed to be an equilib-
rium point, the system will be identified with the
network (Equation 13) about its attraction region
and guarantees that the error in the approxima-
tion ¢ (/) is limited. A deeper explanation about
this issue can be found in the book of Gonzalez-
Miranda (2004).

2.3. LEARNING RULE

The static stage of the dynamic recurrent multi-
layer network is usually trained with a backpro-
pagation algorithm. The basics of this algorithm
was explained in a previous section. For deeper
mathematical aspects of its application in RNN
see Hochreiter ¢t al. (2001). The training patterns
of the static layer of Figure 3 are different com-

binations of values of the state variables, and the
target patterns are given by the sum of each state
variable with their corresponding derivative, as
shown in Figure 4. The network is trained after
the structure of Equation (15):

0 (t1121 + t12Z, + ...+ t1,Z7
e N FIOAR A
w21 Wy e WZn X 2122 22%2 2nZn.
Wpi Wpa o e
" " J(tnlzl + tnzzz + ..t tnnzn)

(15)
in which t; are the expected values of this varia-
ble. To ensure the network has identified the sys-
tem dynamics, the Jacobian of the network at the
source (Equation 16) should have values very close
to those of the system that has been approximated:

Ju= -1, +WT (16)
in which 7, is the Jacobian, / is the identity ma-
trix of dimension n, I/ is the weights matrix, and
T o (;z). The dynamic multilayer network of Fi-
gure 3 can be transformed into a dynamic network
(Hopfield type) by means of the following linear
transformation:

dx dz

X=Tz —=T2=
T dt

17)
Generally the T matrix is square, but if it is not,
the transformation is performed by means of the
generalized inverse. The transformed network will
have the structure:

d

i —INX +TWo (x) (18)
in which the new state vector Y€R™ ,TWERN*N
IN is the identity matrix of dimension .V, and the
transformation (Equation 17) extends the dynamic
multilayer network (Equation 15) into the dynamic
recurrent Hopfield network (Equation 18). In the
Hopfield network, the number of states is greater
than or equal to the number of states of the mul-
tilayer network N = n. After transformation, the
network has the structure:

X1 —X o (x1)
—H T rw) x| G
o (xp)1 (19

The Jacobian of the network described in Equation
(19) should have very close values to those of the
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v

Z+7=wo(tz)

NEURO-SPATIAL VARIATION...

Dynamic multilayer networks, in which z, is the
output of the static layer j, Z, is the derivate with respect to
time of Z, t,is the expected value, o, is the weight, and ¢ is the
transfer function.

Training examples of the multilayer networks in
which Z is the output matrix of static layer, Z is the derivative
with respect to the time of Z, o is the weights matrix, t is the
expected values matrix, and ¢ is the transfer function.

system that has been approximated and should be
equal to those of the multilayer network:
J,=-1,+WT (20)
in which 7, is the Hopfield Jacobian. The RNN
procedure proposed in this investigation, which
includes the steps implicit in Equations, was de-
veloped using tools of Mathworks. (Moler, 2014).

3. Neuro-spatial variation of
properties of rock masses

One of the problems of designing dams is that de-
cisions on very costly expenditure have to be made
based on very sparsely sampled information. The
volume of samples obtained for characterizing
rock masses constitutes only a modest fraction of
the volume of material that impacts the design
and behaviour of proposed structures.

The engineering properties of rock masses are
heterogeneous, with properties varying from lo-
cation to location. Irequently, however, either due
to case calculation or deficiency of data, geotech-
nical engineers assume that properties are homo-
geneous throughout analysed volumes. However,
they are aware that this posture can lead to conclu-
sions that significantly differ from real behaviour,
and admit that correct knowledge of the spatial

distribution of properties promotes safer and more
economic designs.

The proposed NN model for determining spa-
tial variation of properties, which is synthesized
in Figure 5, is based on the first law of geogra-
phy “everything is related to everything else, but
near things are more related than distant things”
(Tobler, 1970). The network is essentially connect-
ed with the analysis of a mathematical space (con-
sider that a mathematical space exists whenever a
set of observations and quantitative measures of
their attributes are available), specifically a geo-
graphic one, where the observations correspond to
locations in a spatial measurement framework that
captures their proximity in the real world.

3.1. DATA BASE DESCRIPTION

To demonstrate the convenience of using the neu-
ro-spatial alternative, a 3D characterization of the
abutments in a dam site is used. The study area is
located in the northern highlands of south-east-
ern México which are structurally characterized
by right-lateral faults in addition to smooth and
ample folds of several km. Along the dam area the
river develops very close to the Bombana syncline
axis, which 1s segmented toward its south-western
flank by the Chicoasén-Malpaso fault, forming
complex graben-syncline structures. The local
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—> coordinate X

thickness of the weathered zone is variable but
bigger in the left abutment.

output
RQD 3.2. TRAINING AND VALIDATIONS SETS.
%REC Nodes/
h coordinate Y .
fll::xg Lz From the 55 boreholes, two sets were compiled for
MT modelling each abutment, one for training and
hidden one for validation. The training set is composed
seture ! depth Z independently of the validation set. Data in the

m NN topology for spatial variation modelling, the
neuro-estimated descriptors are re-integrated as training
patterns under the RNN algorithm, RQD is the Rock Quality
Designation, %REC is the percentage of recuperation, #FRAC is
the number of fractures, °FRAC is the inclination of fractures
and MT is the material type.

geology of the dam site involves limestones of the
Angostura formation (Lépez Ramos, 1969, 1974;
Sanchez, 1969; Sanchez et al., 1978, 1979) in the
right abutment, as well as shales, sandstones and
conglomerates of the Soyal6 formation (Gonzélez,
1967; Lopez Ramos, 1969, 1974) in the left abut-
ment, both covered by unconsolidated slope de-
posits and alluvium. The Angostura formation is
divided into two units: the inferior unit (Ksa-Ul,
biogenic limestones) and the superior unit (Ksa-
U2, breccias). The Soyal6 formation (T'ps) consists
of shale interbedded with sandstones, conglomer-
ates, calcarenites and calcilutites. (Figure 6a).

In order to evaluate the engineering geological
properties of the dam site, 55 boreholes (27 at
the right abutment and 28 at the left abutment)
were drilled to a maximum depth of 201.2 m. The
sum of all the boreholes lengths is 4825 m. In the
right abutment, 2309 m were drilled in rock mass
(Ksa-Ul, Ksa-U2) and 193 m in alluvial deposits.
In the left abutment 738 m were drilled in rock
mass (Ksa-Ul, Ksa-U2), 465 m in alluvial deposits
(Qdt, Qal), and 1117 m in Tps material (Table 1).
Overall, this site has been highly affected by tec-
tonic and fault activities. From the drilling results,
the designation rock quality (ROQD) was evaluat-
ed for the right and left abutments (Table 2). The

training set (70 % of the total) are used to adjust
the weights on the neural network, while the va-
lidation set (the remaining 30 %) is used to mini-
mize overfitting. The validation data are employed
to verify that any increase in accuracy over pre-
dicting training data actually yields an increase in
correctness over cases that have not been shown to
the network before (the network is not trained on
them). If the accuracy over the training data set
grows but not in the validation set then the NN is
overfitting and the training should be stopped and
a new topology (number of hidden nodes) must
be tried. Among data in the validation set, some
patterns are selected as test patterns. These data
are used only for testing the final solution in order
to confirm the actual predictive capacity of the
network.

It is important to point out that for collecting data,
the determination of the location of each bore-
holes was randomly distributed over space. Even
when the objective was to gather a sample set that
represented as much as possible the characteris-
tics of the population in terms of environmental
conditions, the cost of experimenting and site ac-
cessibility were the main constraints to acquire a
good set of measurements. Based on the scarcity
of data, to develop 3D models using traditional
interpolation methods it is extremely difficult and
risky because with such a small number of obser-
vations, the approaches could be full of subjective
and misleading interpretations.

To train networks under the proposed neuro-spa-
tial model, each sample is represented as a vec-
tor with components indicating the position on
each axis (X, Y, Z) and the activation level (pro-
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Alluvial Deposits (Qal)

Slope Deposits (Qdt)

Soyal6 Formation (Tps)
Angostura Formation (Ksa-U2)

‘\‘ ’ ’@3‘%.’% 4 , ‘ Angostura Formation (Ksa-U1)

NEURO-SPATIAL VARIATION...

Fault
Stratification (Dip/Dip direction)
- Lithological contact

o ,.\

Application example: a dam project in the south-eastern of Mexico, geology description.

Ag2000

41800
AWM Application example: a dam project in the south-eastern of Mexico, abutments 3D view.

Table 1. Material descriptors.

Alluvial Deposits (Qal) Gravel, sand and silt

Slope Deposits (Qdy) Gravel and limestone blocks packed in clay-sandy material

Soyal6 Formation (Tps) Shale interbedded with sandstones, conglomerates, calcarenites and calcilutites
Angostura Formation (Ksa-U2)  Mainly breccias whose clasts are fossils and older rocks

Angostura Formation (Ksa-U1l)  Alternation of good quality biogenetic limestones with min or karst development
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400

4&?00 0

Application example: a dam project in the south-eastern of Mexico, database, boreholes situation.

Table 2. Rock Mass Rating RMR Values.

RsaUl | Reolz | e
A T KUl |

Uniaxial compressive strength (MPa) 12 117

RDQ(%) 17 78 17 84 13 68
Spacing of discontinuities (m) 15 0.6-2 20 > 2 10 0.2-0.6
Condition of discontinuities 18 - 22 - 20 -
Groundwater 15 Dry 15 Dry 15 Dry
Total 77 81 65
Class/Desctiption 11/Good I/Vety good 11/Good

perty value: RQD, %REC, #FRAC, °FRAC and

MT) for an output neuron. By assigning to each

3.3. NETWORK STRUCTURE

3D-inputs (x, y, z) five different output neurons, it
is conveniently assumed that the five parameters,
interacting, define the quality of rock-mass. Once
the NN learns the relations between the position
in the space and the rock conditions, the model
is able to predict any value of RQD, %REC,
#IFRAC, °FRAC and MT (as output vector) for
any XYZ input.

All of the NNs used were three-layer feed forward
networks. As was mentioned, the number of input
neurons equalled the number of spatial variables;
thus the model had three mput neurons x;, y;, z,.
The number of output neurons was the number
of measured index rock-properties in each abut-
ment (five neurons).

The number of hidden neurons (arranged in one
layer) was different for each evaluated NN; the op-
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timum number of nodes was determined though
a trial — error approach modified from the meth-
od described by Masters (1993). The root mean
squares (RMS) were used as criteria to assess net-
works performance. The RMS measures the dif-
ference between the estimated and the prescribed
output values for the training set (i.e., how well the
results from the network match the observed). The
lower the training error is and the higher the test
accuracy, the better the network performance. The
first trained NN started with 50 hidden neurons
that, based on experience, was considered a good
starting minimum number for hidden units. When
the network was stabilized, that is, the RMS did
not diminish in subsequent iterations, the training
process was terminated and its efliciency recorded.
This hidden layer was then increased by five units,
creating a new model, and the training and termi-
nation processes were repeated.

The optimum number of hidden neurons is the
number at which the network performs well (i.e.,
with high accuracy and low training error). For
the right abutment, this number could be between
560 and 580, and for the left abutment between
650 and 690. Figures 7a and 7b shows the network
performance versus the number of hidden neu-
rons for each abutment. In the graphs the number
of iterations and the average correlation (sum of
the correlations obtained for each output para-
meter divided by five) generated by each topology
is observed.

160 570 100

140 o
120 =2 s
=
100 5
80 500 b
= E]
60 g
=
40 g
°
20 <

0 0

0 200 400 600 800

Number of hidden nodes

Optimum number of hidden neurons a) right
abutment.

The final decision among these possible structures
was based on the test accuracy for individual pro-
perties profiles over the validation set. This 13 jus-
tified because the networks were trained to learn
from the training data set. It is possible that with
some structures (defined by the number of hidden
neurons) the network could be tuned to the train-
ing data set too much (overfitting); as a result, the
network would not generalize well to a different
data set. Thus the selection of the number of hid-
den neurons should be based more heavily on the
test accuracy from the validation data set while still
considering the RMS in training.

On the basis of these criteria, the number of hid-
den neurons in the networks for the right and left
abutments was set to 570 and 780, respectively,
where test accuracy was highest. Properties pro-
files (testing data) calculated with the RNN; are
shown in Figures 8a and 8b. The remarkable ac-
curacy permits us to label these RNNs as able to
reflect the spatial patterns of rock properties. The
proposed methodology, them, is effective in the
characterisation of both abutments.

3.4. PROPERTIES OF THE ABUTMENTS: 3D DISPLAYS

Iterations x 10000

As previously mentioned, the considered explora-
tion consisted mainly of surface geological surveys,
drilling and core recovery, and a few permeability
tests in an extension of the Grijalva River of about
1.2 km. Due to economic constraints, restricted

250 780 100
200 g
£
150 =
=]
]
100 E 2
=
50 5
N

0 0
0 200 400 600 300 1000

Number of hidden nodes

AL W4 B Optimum number of hidden neurons b) left
abutment.
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accessibility, and delays in construction, a deeper
exploration campaign could not be developed, so
it was necessary to complete the hydrogeologic
model from a minimal database extracted from
isolated tests. The importance of developing a 3D
definition of properties, as accurate as possible,
was amplified by the recognized geological ha-
zards: high-permeability zones and karsticity.

Once the RNNs for both abutments were trained
well enough, they were used to populate the vec-
tors of properties for each natural volume. To

compute the outputs two matrices of geographic
coordinates and depths were presented to the
trained networks. Each matrix was constructed
with points that fit within the defined borders in
the X, Y and Z axes (see the limits depicted in
Figures 6b and 6¢). The need for a thorough defi-
nition of the conditions of the rock led to an opti-
mum spacing in the X and Y axes of 1 m, and 0.5
m in the 7 axis. The resulting matrix was 713000
locations on the XY plane and 500 positions in

depth for each abutment.
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The volumes can be graphically displayed and
deeply explored for any X, Y, Z coordinate using
the massive 3D environments. Examples of spa-
tial variation of RQD is shown in Figures 9a and
9b and 9c. In Figures 10a and 10b the distribu-
tion of #FRAC is presented, while in Figures 11b
and MT are shown in Figures 9 to 11. The ad-
vantageous ability of the neuronal model to ge-
nerate detailed descriptions of the volumes of soil
and rock is reflected in the example of Figure 9,
where the distribution of RQD values can be very
useful when selecting the best place to situate the
dam project. The traditional 2D conception that
designers commonly use for analyzing the infor-
mation collected on the site is improved using 3D
modelling that takes into account the spatial de-

pendency of the whole set of parameters under
study. See Figure 10a and 10b.

To exemplify the neural advantages let’s examine
one of the most useful parameters in determining
the quality of the rock mass the degree of fractur-
ing. This is perhaps one of the most difficult pa-
rameters to interpret and include in analyses and
models of spatial variation, but the RNNs that are
presented in this paper permit us to determine the
XYZ situations in which the highest and lowest
values of #FRAC can be found (Figure 11). The
congruence of the neuro-results was validated
using the permeability tests results. An example of
immediate application of this type of analysis is
shown in Figure 12. When a waterproof screen is
being designed, a very common civil work in dam

stream

1878000

150

250 T # Fractures
Right abutment
gh =0 25
200 =+ Down stream
Up stream
150 4—
1878200 Y (UTM)
1878100~
100 — | : | I
482600 482700 482800 482900 483000
X (UTM)
Highly fractured zones, determination of XYZ situations using the RNN calculation, front.
1878200
S
é‘* 1878100 Down Up stream
—~

N T |

482600 482700 482800

T T
482900 483000

X (UTM)
AW Highly fractured zones, determination of XYZ situations using the RNN calculation, plant.



Boletin de la Sociedad Geoldgica Mexicana | 2016 / @

1 878 300
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250 = Ksa-U2
= Qal
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160
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== Qdt’

ATIWEEN Analysis of material distribution, conventional

approach.

projects, it is necessary to locate the sites of the

biggest and smallest leaks. As shown in Figure 12,

in a much related way with human interpretation,

the neural model helps to define easily and directly
these two conditions.

In short, the 3D definition of index properties per-

mits us to:

* check the hypothesis of conceptual hydro-
geological model, previously developed by
geologists, and identify areas with very limited
information where particular conditions de-
mand further exploration,

*  define the most suitable locations of the dam
foundation, avoiding areas having possibly the
greatest levels of water infiltration, and

* feed functions for estimating the volume of
impermeable barriers, acquiring a more pre-
cise knowledge about flows of water during
different stages of the work.

The NN capacities can be expanded through the

integration of more properties; for example results

of seismic tomography can be added to better

Left abutment T 250
Up stream Down stream
- 200
- 150
1877700 Y (UTM)
18778001877900
} } f t 100 |y Qal
483000 482900 482800 482700 482600 mm Qdt’
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483000 482900 482800
X (UTM)

ALTICWELN Analysis of material distribution, RNN definition.
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competence

i WORST CONDITIONS
s (low RQD, low %REC
z high #FRAC, Qal-Qdt)
; MEDIUM
-4
#®
a
g

HIGH

T BEST CONDITIONS

low #FRAC, KsaU1-KsaU2)

O PA Worst and best conditions for construction of
waterproof screens, an example of analysis using four
parameters.

identify important geological faults and their as-
sociated properties, and for predicting structural
patterns that could have influence on the proper-
ties of the rock mass.

It is important to mention that the election of the
grid size could have an effect on the displayed
variation of properties, particularly when the ani-
sotropy of the rock mass is remarkable. To avoid
misconceptions, it is recommended to manage
massive sets of 3D properties, by shortening the
distance between the neural estimations thereby
increasing the effectiveness of the property predic-
tions.

4. Conclusions

From geotechnical and geological perspectives, the
proposed methodology, the neural-spatial approxi-
mation, is very useful when conventional interpo-
lation methods cannot be applied, for example in
sparsely instrumented media. This technique pro-
vides valuable data estimation of strata thickness,
anomalies, fractured zones and rock structures at
locations where no information is available and
when is prohibitive to implement statistics or con-
ventional interpolation methods.

The methodology proposed discovers the spatial

relations in scarce information from i situ and la-
boratory tests.

Through a flexible computational organization
that the recurrent neural networks provide, the
model generates a readable, simple-to-use eco-
nomical tool for the parallel interpretation of
properties of complex natural environments.
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