References
1. Lum, Q.C. 1888, Über Fluorescenz und Phosphorescenz, I. Abhandlung, Annalen der Physik, 34, 446-463.
2. Vacher, M., Fdez. Galván, I., Ding, B.W., Schramm, S., Berraud-Pache, R., Naumov, P., Ferré, N., Liu, Y.J., Navizet, I., Roca-Sanjuán, D., Baader, W.J., Lindh, R. 2018, Chemi- and Bioluminescence of Cyclic Peroxides, Chem. Rev., 118 (15), 6927–6974.
3. Shah, S.N.A., Lin, J.M. 2017, Recent advances in chemiluminescence based on carbonaceous dots, Advances in Colloid and Interface Science. 241, 24–36.
4. Stella, P., Kortner, M., Ammann, C., Foken, T., Meixner, F.X., Trebs, I. 2013, Measurements of nitrogen oxides and ozone fluxes by eddy covariance at a meadow: evidence for an internal leaf resistance to NO2, Biogeosciences, 10, 5997-6017.
5. Kuntzleman, T.S., Rohrer, K., Schultz, E. 2012, The Chemistry of Lightsticks: Demonstrations to Illustrate Chemical Processes. Journal of Chemical Education. 89 (7), 910–916.
6. Callaway, E. 2013, Glowing plants spark debate, Nature, 498, 15–16.
7. Shimomura, O. 1995, A short story of aequorin, The Biological Bulletin, 189 (1), 1–5.
8. Poisson, J. 2010. Raphaël Dubois, from pharmacy to bioluminescence, Rev Hist Pharm, 58 (365), 51–56.
9. Harvey, E.N. 1932, The evolution of bioluminescence and its relation to cell respiration, Proceedings of the American Philosophical Society, 71, 135–141.
10. Rees, J. F., de Wergifosse, B., Dubuisson, M., Noiset, O., Janssens, B., Thompson, E.M. 1998, The origins of marine bioluminescence: Turning oxygen defence mechanisms into deep-sea communication tools, Journal of Experimental Biology, 201, 1211–1221.
11. Haddock, S.H.D., Moline, M.A., Case, J.F. 2010, Bioluminescence in the Sea, Annual Review of Marine Science, 2, 443–493.
12. Hastings, J.W. 1983, Biological diversity, chemical mechanisms, and the evolutionary origins of bioluminescent systems, J. Mol. Evol., 19 (5), 309–321.
13. Shimomura, O., Johnson, F.H., Saiga, Y. 1962, Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea, J Cell Comp Physiol., 59 (3), 223–239.
14. Shimomura, O., Johnson, F.H. 1975, Regeneration of the photoprotein aequorin, Nature, 256 (5514), 236–238.
15. Morise, H., Shimomura, O., Johnson, F.H., Winant, J. 1974, Intermolecular energy transfer in the bioluminescent system of Aequorea, Biochemistry, 13 (12), 2656–2662.
16. Martini, S., Haddock, S.H.D., 2017, Scientific Reports. 7, 45750.
17. Young, R.E., Roper, C.F. 1976, Bioluminescent countershading in midwater animals: evidence from living squid, Science. 191 (4231), 1046–1048.
18. Meyer-Rochow, V.B. 2007, Glowworms: a review of "Arachnocampa" spp and kin, Luminescence, 22 (3), 251–265.
19. Stanger-Hall, K.F., Lloyd, J.E., Hillis, D.M. 2007, Phylogeny of North American fireflies (Coleoptera: Lampyridae): implications for the evolution of light signals, Molecular Phylogenetics and Evolution, 45 (1), 33–49.
20. Marek, P., Papaj, D., Yeager, J., Molina, S., Moore, W. 2011, Bioluminescent aposematism in millipedes, Current Biology, 21 (18), R680–R681.
21. Meyer-Rochow, V.B., Moore, S. 1988, Biology of Latia neritoides Gray 1850 (Gastropoda, Pulmonata, Basommatophora): the Only Light-producing Freshwater Snail in the World, Internationale Revue der gesamten Hydrobiologie und Hydrographie, 73 (1), 21–42.
22. Deheyn, D.D.,Wilson, N.G. 2010, Bioluminescent signals spatially amplified by wavelength-specific diffusion through the shell of a marine snail.,Proceedings of the Royal Society. 278 (1715), 2112–2121.
23. Copeland, J., Daston, M.M. 1989, Bioluminescence in the terrestrial snail Quantula (Dyakia) striata, Malacologia, 30 (1–2), 317–324.
24. Young, R.E. 1983, Oceanic Bioluminescence: an Overview of General Functions, Bulletin of Marine Science, 33 (4), 829–845.
25. Eisner, T. Goetz, M.A., Hill, D.E., Smedley, S.R., Meinwald, J. 1997, Firefly "femmes fatales" acquire defensive steroids (lucibufagins) from their firefly prey, Proceedings of the National Academy of Sciences of the United States of America, 94(18), 9723–9728.
26. Merritt, D.J. 2013, Standards of evidence for bioluminescence in cockroaches", Naturwissenschaften, 100 (7), 697–698.
27. Douglas, R.H, Mullineaux, C.W., Partridge, J.C. 2000, Long-wave sensitivity in deep-sea stomiid dragonfish with far-red bioluminescence: evidence for a dietary origin of the chlorophyll-derived retinal photosensitizer of Malacosteus niger, Philosophical Transactions of the Royal Society B., 355 (1401), 1269–1272.
28. Koo, J., Kim, Y., Kim, J., Yeom, M., Lee, I.C., Nam, H.G. 2007, A GUS/Luciferase Fusion Reporter for Plant Gene Trapping and for Assay of Promoter Activity with Luciferin-Dependent Control of the Reporter Protein Stability, Plant and Cell Physiology, 48 (8), 1121–1131.
29. Nordgren, I.K., Tavassoli, A. 2014, A bidirectional fluorescent two-hybrid system for monitoring protein-protein interactions, Molecular BioSystems, 10 (3), 485–490.
30. Xiong, Y.Q., Willard, J., Kadurugamuwa, J.L., Yu, J., Francis, K. P., Bayer, A. S. 2004, Real-Time in Vivo Bioluminescent Imaging for Evaluating the Efficacy of Antibiotics in a Rat Staphylococcus aureus Endocarditis Model, Antimicrobial Agents and Chemotherapy, 49 (1), 380–387.
31. Di Rocco, G., Gentile, A., Antonini, A., Truffa, S., Piaggio, G., Capogrossi, M.C., Toietta, G. 2012, Analysis of biodistribution and engraftment into the liver of genetically modified mesenchymal stromal cells derived from adipose tissue, Cell Transplantation, 21 (9), 1997–2008.
32. Zhao, D., Richer, E., Antich, P.P., Mason, R.P. 2008, Antivascular effects of combretastatin A4 phosphate in breast cancer xenograft assessed using dynamic bioluminescence imaging and confirmed by MRI, The FASEB Journal, 22 (7), 2445–2451.
33. Altura, M.A., Heath-Heckman, E.A., Gillette, A., Kremer, N., Krachler, A.M., Brennan, C., Ruby, E.G., Orth, K., McFall-Ngai, M.J. 2013, The first engagement of partners in the Euprymna scolopes-Vibrio fischeri symbiosis is a two-step process initiated by a few environmental symbiont cells, Environmental Microbiology, 15 (11), 2937–2950.
34. Forster, R.J., Bertoncello, P., Keyes, T.E. 2009, Electrogenerated Chemiluminescence, Annual Review of Analytical Chemistry, 2,.359–385.
35. Valenti, G., Fiorani, A., Li,. H, Sojic, N., Paolucci, F. 2016, Essential Role of Electrode Materials in Electrochemiluminescence Applications, ChemElectroChem, 3, 1990–1997.
36. Valenti, G., Rampazzo, R., Bonacchi, S., Petrizza, L., Marcaccio, M.,, Montalti M., Prodi, L., Paolucc,i F. 2016, Variable Doping Induces Mechanism Swapping in Electrogenerated Chemiluminescence of Ru(bpy)32+ Core−Shell Silica Nanoparticles, J. Am. Chem. Soc., 138, 15935–15942.
37. Miao, W., Choi, J., Bard, A. 2002, "Electrogenerated Chemiluminescence 69: The Tris(2,2′-bipyridine)ruthenium(II), (Ru(bpy)32+)/ Tri-n-propylamine (TPrA) System RevisitedsA New Route Involving TPrA•+ Cation Radicals, J. Am. Chem. Soc., 124, 14478–14485.
38. Valenti, G., Zangheri, M., Sansaloni, S., Mirasoli, M., Penicaud, A., Roda, A., Paolucci, F. 2015, Transparent Carbon Nanotube Network for Efficient Electrochemiluminescence Devices, Chemistry: A European Journal. 21, 12640–12645.
39. Fähnrich, K.A., Pravda, M., Guilbault, G.G. 2001). "Recent applications of electrogenerated chemiluminescence in chemical analysis, Talanta. 54 (4), 531–559.
40. Miao, W. 2008, Electrogenerated Chemiluminescence and Its Biorelated Applications, Chemical Reviews, 108 (7), 2506–2553.
41. Lee, W.Y. 1997, Tris (2,2′-bipyridyl)ruthenium(II) electrogenerated chemiluminescence in analytical science, Mikrochimica Acta, 127 (1-2), 19–39.
42. Wei, H., Wang, E. 2008, Solid-state electrochemiluminescence of tris(2,2′-bipyridyl) ruthenium, TrAC Trends in Analytical Chemistry, 27 (5), 447–459.
43. Wei, H., Wang, E. 2011, Electrochemiluminescence of tris(2,2′-bipyridyl)ruthenium and its applications in bioanalysis: a review, Luminescence, 26 (2), 77–85.
44. Raman, A., Oommen, I.K., Sharma, D.N. 2001, Lyoluminescence characteristics of trehalose dehydrate, Applied Radiation and Isotopes, 54 (3), 387–391.
45. Ivey, H.F. 1974, Candoluminescence and radical-excited luminescence, Journal of Luminescence, 8 (4), 271–307 (1974)
46. Mason, D.M. 1967, Candoluminescence, Proc. Am. Chem. Soc., Div. Fuel Chem., 11 (2), 540–554.
47. Garten, V.A., Head, R. B. 1966, Crystalloluminescence, Nature, 209, 705.
48. Raguse, J. 2015, Correlation of Electroluminescence with Open-Circuit Voltage from Thin-Film CdTe Solar Cells, Journal of Photovoltaics, 5 (4), 1175-1178.
49. Mitsui, T, Sekiguchi, T, Fujita, D, Koguchi, N. 2005, Comparison between electron beam and near-field light on the luminescence excitation of GaAs/AlGaAs semiconductor quantum dots, Jpn. J. Appl. Phys.,44, 1820–1824.
50. Klein, C. A.1968, Bandgap dependence and related features of radiation ionization energies in semiconductors, J. Appl. Phys. 39, 2029–2038.
51. Lähnemann, J., Hauswald, C., Wölz, M., Jahn, U., Hanke, M., Geelhaar, L. Brandt, O. 2014, Localization and defects in axial (In,Ga)N/GaN nanowire heterostructures investigated by spatially resolved luminescence spectroscopy, J. Phys. D: Appl. Phys. 47, 394010.
52. Zagonel, L.F., Mazzucco, S., Tencé, M., March, K., Bernard, R., Laslier, B., Jacopin, G., Tchernycheva, M., Rigutti, L., Julien, F.H., Songmuang, R., Kociak, M. 2011, Nanometer Scale Spectral Imaging of Quantum Emitters in Nanowires and Its Correlation to Their Atomically Resolved Structure, Nano Letters, 11, 568-573.
53. García de Abajo, F.J. 2010, Optical excitations in electron microscopy, Reviews of Modern Physics, 82, 209–275.
54. Sapienza, R., Coenen, R., Renger, J., Kuttge, M., van Hulst, N. F., Polman, A. 2012, Deep-subwavelength imaging of the modal dispersion of light, Nature Materials. 11, 781–787.
55. Orel, V.E., Alekseyev, S.B., Grinevich, Y.A. 1992, Mechanoluminescence: an assay for lymphocyte analysis in neoplasis, Bioluminescence and chemiluminescence, 7, 239–244.
56. Karasev, V.V., Krotova, N.A., Deryagin, B.W. 1953, Study of electronic emission during the stripping of a layer of high polymer from glass in a vacuum, Doklady Akademii Nauk SSSR (Proceedings of the USSR Academy of Sciences). 88, 777–780.
57. Camara, C.G., Escobar, J.V., Hird, J.R., Putterman, S.J., 2008, Correlation between nanosecond X-ray flashes and stick-slip friction in peeling tape, Nature, 455, 1089–1092.
58. Orel, V.E. Alekseyev. S.B. Grinevich, Y..A. 1992. Mechanoluminescence: an assay for lymphocyte analysis in neoplasis, Bioluminescence and chemiluminescence, 7, 239–244.
59. Chauhan, V.S. 2008, Effects of strain rate and elevated temperature on electromagnetic radiation emission during plastic deformation and crack propagation in ASTM B 265 grade 2 titanium sheets, Journal of Materials Science, 43, 5634–5643.
60. Camara, C.G.; Escobar, J.V., Hird, J.R., Putterman, S.J. 2008, Correlation between nanosecond X-ray flashes and stick–slip friction in peeling tape, Nature, 455, 1089–1092.
61. Frid, V. 2006, Fracture induced electromagnetic radiation, Journal of Applied Physics, 36, 1620–1628.
62. Frid, V. 2000, Electromagnetic radiation method water-infusion control in rockburst-prone strata, Journal of Applied Geophysics, 43 (1), 5–13.
63. Orel, V.E., Romanov, A.V., Dzyatkovskaya, N.N., Mel’nik, Y.I. 2002, The device and algorithm for estimation of the mechanoemission chaos in blood of patients with gastric cancer, Medical Engineering Physics, 24, 365–3671.
64. Orel, V.E., Kadiuk, I.N., Mel`nik, Y.I., Dzyatkovskaya, N.N. 1994 Physical and engineering principles in the study of mechanically-induced emission of blood, Biomedical Engineering, 28, 335–341.
65. Orel, V.E., Alekseyev, S.B., Grinevich, Yu.A. 1992, Mechanoluminescence: an assay for lymphocyte analysis in neoplasis, Bioluminescence and chemiluminescence, 7, 239–244.
66. Camara, C.G., Escobar, J.V., Hird, J.R., Putterman, S.J. 2008, Correlation between nanosecond X-ray flashes and stick-slip friction in peeling tape, Nature. 455, 1089–1092.
67. Krishna, N.G. 2014, X-Ray Emission during Rubbing of Metals, Tribology in Industry, 36, 229–235.
68. Chauhan, V.S. 2008, Effects of strain rate and elevated temperature on electromagnetic radiation emission during plastic deformation and crack propagation in ASTM B 265 grade 2 titanium sheets, Journal of Materials Science, 43, 634–5643.
69. Kumar, R. 2006, Effect of processing parameters on the electromagnetic radiation emission during plastic deformation and crack propagation in copper-zinc alloys, Journal of Zhejiang university science A, 7 (1), 1800–1809.
70. Frid, V. 2006, Fracture induced electromagnetic radiation, Journal of Applied Physics, 36, 1620–1628.
71. Frid, V. 2000, Electromagnetic radiation method water-infusion control in rockburst-prone strata, Journal of Applied Geophysics, 43 (1), 5–13.
72. Orel, V.E., Romanov, A.V., Dzyatkovskaya, N.N., Mel’nik, Yu.I. 2002, The device and algorithm for estimation of the mechanoemission chaos in blood of patients with gastric cancer, Medical Engineering Physics, 24, 365–3671.
73. Atari, N.A. 1982, Piezoluminescence phenomenon. Physics Letters A. 90 (1–2), 93–96.
74. Reynolds, G. 1997, Piezoluminescence from a ferroelectric polymer and quartz, Journal of Luminescence, 75 (4), 295–299.
75. Frenzel, H., Schultes, H. 1934, "Luminescenz im ultraschallbeschickten Wasser". Z. Phys. Chem. B2, 421
76. Gaitan, D. F.; L. A. Crum; R. A. Roy; C. C. Church (June 1992). "Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble". The Journal of the Acoustical Society of America. 91(6), 3166–3183.
77. Brenner, M.P., Hilgenfeldt, S., Lohse, D. 2002, Single bubble sonoluminescence, Reviews of Modern Physics, 74(2) 425–484.
78. Hiller, R., Barber, B. 1995, Producing Light from a Bubble of Air, Scientific American, 272(2), 96–98.
79. Hayes, G.R., Deveaud, B. 2002. Is Luminescence from Quantum Wells Due to Excitons, Physica Status Solidi A, 190(3), 637–640.
80. Kira, M., Jahnke, F., Koch, S.W. 1999, Quantum Theory of Secondary Emission in Optically Excited Semiconductor Quantum Wells, Physical Review Letter, 82 (17), 3544–3547.
81. Kimble, H.J., Dagenais, M., Mandel, L. 1977, Photon Antibunching in Resonance Fluorescence, Physical Review Letter, 39 (11), 691–695.
82. Kira, M., Jahnke, F., Hoyer, W., Koch, S.W.1999, Quantum theory of spontaneous emission and coherent effects in semiconductor microstructures, Progress in Quantum Electronics, 23 (6), 189–279.
83. Kaindl, R.A., Carnahan, M.A., Hägele, D., Lövenich, R, Chemla, D.S. 2003, Ultrafast terahertz probes of transient conducting and insulating phases in an electron–hole gas". Nature, 423 (6941), 734–738.
84. Arlt, S., Siegner, U., Kunde, J., Morier-Genoud, F., Keller, U. 1999, Ultrafast dephasing of continuum transitions in bulk semiconductors, Physical Review B, 59 (23), 14860–14863.
85. Umlauff, M., Hoffmann, J., Kalt, H., Langbein, W., Hvam, J., Scholl, M., Söllner, J., Heuken, M., Jobst, B., Hommel, D. 1998, Direct observation of free-exciton thermalization in quantum-well structures, Physical Review B, 57 (3), 1390–1393.
86. Polland, H,; Rühle, W., Kuhl, J., Ploog, K., Fujiwara, K., Nakayama, T.1987, Nonequilibrium cooling of thermalized electrons and holes in GaAs/Al_{x}Ga_{1-x}As quantum wells, Physical Review B, 35 (15), 8273–8276.
87. Shah, J, Leite, R.C.C., Scott, J.F. 1970, Photoexcited hot LO phonons in GaAs, Solid State Communications, 8 (14), 1089–1093.
88. Wang, H., Ferrio, K., Steel, D., Hu, Y., Binder, R., Koch, S.W. 1993, Transient nonlinear optical response from excitation induced dephasing in GaAs, Physical Review Letters, 71 (8), 1261–1264.
89. Baranovskii, S., Eichmann, R., Thomas, P. 1998, Temperature-dependent exciton luminescence in quantum wells by computer simulation, Physical Review B, 58 (19), 13081–13087.
90. Acuña, A.U., Amat-Guerri, F., Morcillo, P., Liras, M., Rodríguez B. 2009, Structure and Formation of the Fluorescent Compound ofLignum nephriticum, Organic Letters, 11 (14), 3020–3023.
91. Valeur, B., Berberan-Santos, M.R.N. 2011,A Brief History of Fluorescence and Phosphorescence before the Emergence of Quantum Theory, Journal of Chemical Education, 88 (6), 731–738.
92. Clarke, E.D. 1819, Account of a newly discovered variety of green fluor spar, of very uncommon beauty, and with remarkable properties of colour and phosphorescence, ,The Annals of Philosophy, 14: 34–36.
93. Brewster, D. 1834, On the colours of natural bodies, Transactions of the Royal Society of Edinburgh, 12 (2), 538–545.
94. Fujii, R. 2000, The regulation of motile activity in fish chromatophores, Pigment Cell Research, 13 (5), 300–319.
95. Abbott, F.S. 1973, Endocrine Regulation of Pigmentation in Fish, Integrative and Comparative Biology, 13 (3), 885–894.
96. Salih, A., Larkum, A., Cox, G., Kühl, M., Hoegh-Guldberg, O 2000, Fluorescent pigments in corals are photoprotective, Nature, 408 (6814) 850–853.
97. Roth, M.S., Latz, M.I., Goericke, R., Deheyn, D.D. 2010, Green fluorescent protein regulation in the coral Acropora yongei during photoacclimation, Journal of Experimental Biology, 213 (21) 3644–3655.
98. Bou-Abdallah, F., Chasteen, N.D., Lesser, M.P. 2006, Quenching of superoxide radicals by green fluorescent protein, Biochimica et Biophysica Acta (BBA) - General Subjects, 1760 (11) 1690–1695.
99. Field, S.F., Bulina, M.Y., Kelmanson, I.V., Bielawski, J.P., Matz, M.V. 2006, Adaptive Evolution of Multicolored Fluorescent Proteins in Reef-Building Corals, Journal of Molecular Evolution, 62 (3), 332–339.
100. Tsien, R.Y. 1998, The Green Fluorescent Protein. Annual Review of Biochemistry, 67, 509–544.
101. Bou-Abdallah, F., Chasteen, N.D., Lesser, M.P. 2006, Quenching of superoxide radicals by green fluorescent protein, Biochimica et Biophysica Acta (BBA) - General Subjects, 1760 (11), 1690–1695.
102. Douglas, R.H., Partridge, J.C., Dulai, K., Hunt, D., Mullineaux, C.W., Tauber, A.Y. Hynninen, P.H. 1998, Dragon fish see using chlorophyll, Nature, 393 (6684), 423–424.
103. Arnold, K.E. 2002, Fluorescent Signaling in Parrots, Science, 295 (5552) 92.
104. Andrews, K, Reed, S.M., Masta, S.E. 2007, Spiders fluoresce variably across many taxa, Biology Letters, 3 (3), 265–267.
105. Stachel, S.J., Stockwell, S.A., Van Vranken, D.L. 1999, The fluorescence of scorpions and cataractogenesis, Chemistry & Biology, 6 (8), 531–539.
106. Iriel, A.A., Lagorio, M.A.G. 2010,. Is the flower fluorescence relevant in biocommunication?, Naturwissenschaften, 97 (10), 915–924.
107. Rye, H.S., Dabora, J.M., Quesada, M.A., Mathies, R.A., Glazer, A.N. 1993, Fluorometric Assay Using Dimeric Dyes for Double- and Single-Stranded DNA and RNA with Picogram Sensitivity, Analytical Biochemistry, 208 (1), 144–150.
108. Smith, W. L. Buck, C.A., Ornay, G.S., Davis, M..P., Martin, R. P., Gibson, S.Z., Girard, M,G. 2018, Improving Vertebrate Skeleton Images: Fluorescence and the Non-Permanent Mounting of Cleared-and-Stained Specimens, Copeia, 106 (3), 427–435.
109. Hara, T., Ughi, G.J.., McCarthy, J.R., Erdem, S.S, Mauskapf, A., Lyon, S.C., et al. 2015, Intravascular fibrin molecular imaging improves the detection of unhealed stents assessed by optical coherence tomography in vivo, Eur Heart J, 38 (6), 447–455.
110. Zitoun, D., Bernaud, L., Manteghetti, A. 2009, Microwave Synthesis of a Long-Lasting Phosphor, J. Chem. Educ., 86, 72-75.
111. Raman, C.V. 1928, A new radiation, Indian J. Phys, 2, 387–398.
112. Singh, R. 2002, C. V. Raman and the Discovery of the Raman Effect, Physics in Perspective, 4 (4), 399–420.
113. Dhar, L., Rogers, J.A., Nelson, K.A., 1994, Time-resolved vibrational spectroscopy in the impulsive limit, Chem. Rev., 94, 157–193.
114. Lamb Jr. G.L., 1971, Analytical description of ultra-short optical pulse propagation in a resonant medium, Rev. Mod. Phys., 43, 99–124.
115. Jones, W.J., Stoicheff, B.P. 1964, Inverse Raman Spectra: Induced Absorption at Optical Frequencies, Phys. Rev. Lett., 13, 657 – 659.
116. https://en.wikipedia.org/wiki/Radioluminescence acces date 6/14/2018.
117. https://en.wikipedia.org/wiki/Thermoluminescence, acces date 6/14/2018.
118. https://en.wikipedia.org/wiki/Light-emitting_diode, acces date 6/14/2018.
119. Zheludev, N. 2007, The life and times of the LED: a 100-year history, Nature Photonics, 1 (4) 189–192.
120. Kroemer, H. 2013, The Double-Heterostructure Concept: How It Got Started, Proceedings of the IEEE, 101 (10), 2183–2187.
121. Park, S.I., Xiong, Y., Kim, R.H., Elvikis, P. Meitl, M. Kim, D.H. Wu, J. Yoon, J. Yu, C.J., Liu, Z. Huang, Y., Hwang, K.C., Ferreira, P., Li, X. Choquette, K. Rogers, J.A. 2009, Printed Assemblies of Inorganic Light-Emitting Diodes for Deformable and Semitransparent Displays, Science, 325 (5943), 977–981.
122. Dadgar, A., Alam, A., Riemann, T., Bläsing, J., Diez, A., Poschenrieder, M., Strassburg, M., Heuken, M., Christen, J., Krost, A. 2001, Crack-Free InGaN/GaN Light Emitters on Si(111), Physica Status Solidi A, 188, 155–158.
123. Efremov, A.A., Bochkareva, N.I., Gorbunov, R.I., Lavrinovich, D.A., Rebane, Y.T., Tarkhin, D.V., Shreter, Y.G. 2006, Effect of the joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs, Semiconductors, 40 (5), 605–610.
124. Narendran, N, Gu, Y. 2005, Life of LED-based white light sources, IEEE/OSA Journal of Display Technology, 1 (1), 167–171.
125. Koizumi, S., Watanabe, K., Hasegawa, M., Kanda, H. 2001, Ultraviolet Emission from a Diamond pn Junction, Science, 292 (5523), 1899–1901.
126. Kubota, Y., Watanabe, K., Tsuda, O., Taniguchi, T. 2007, Deep Ultraviolet Light-Emitting Hexagonal Boron Nitride Synthesized at Atmospheric Pressure, Science, 317(5840), 932–934.
127. Watanabe, K., Taniguchi, T., Kanda, H. 2004, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal, Nature Materials, 3(6), 404–409.
128. Taniyasu, Y., Kasu, M., Makimoto, T. 2006, An aluminium nitride light-emitting diode with a wavelength of 210 nanometres, Nature, 441 (7091), 325–328.
129. Mori, M., Hamamoto, A, Takahashi, A., Nakano, M., Wakikawa, N., Tachibana, S., Ikehara, T., Nakaya, Y., Akutagawa, M., Kinouchi, Y. 2007, Development of a new water sterilization device with a 365 nm UV-LED, Medical & Biological Engineering & Computing, 45 (12), 1237–1241.
130. Bessho, M, Shimizu, K. 2012, Latest trends in LED lighting, Electronics and Communications in Japan, 95 (1), 1–7.
131. Moreno, I. Contreras, U. 2007, Color distribution from multicolor LED arrays, Optics Express, 15 (6), 3607–3618.
132. Schubert, E.F., Kim, J.K. 2005, Solid-State Light Sources Getting Smart, Science, 308 (5726), 1274–1278.
133. Burroughes, J.H. Bradley, D.D.C., Brown, A.R., Marks, R.N., MacKay, K., Friend, R.H., Burns, P.L., Holmes, A.B. 1990, Light-emitting diodes based on conjugated polymers, Nature, 347 (6293), 539–541.
134. Bardsley, J.N. 2004, International OLED Technology Roadmap. IEEE Journal of Selected Topics in Quantum Electronics, 10 (1) 3–4.
135. Gustafsson, G, Cao, Y., Treacy, G.M., Klavetter, F., Colaneri, N., Heeger, A.J. 1992, Flexible light-emitting diodes made from soluble conducting polymers, Nature, 357 (6378), 477–479.
136. Ross, J.S., Klement, P., Jones, A., Ghimire, N.J., Yan, J, Mandrus, D.G.., Taniguchi, T., Watanabe, K.,,Kitamura, K., Yao, W., Cobden, D.H., Xu, X. 2014. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions, Nature Nanotechnology, 9 (4), 268–272.
137. Lim, S.R., Kang, D., Ogunseitan, O.A., Schoenung, J.M. 2011, Potential Environmental Impacts of Light-Emitting Diodes (LEDs): Metallic Resources, Toxicity, and Hazardous Waste Classification, Environmental Science & Technology, 45 (1), 320–327.
138. Luginbuhl, C. 2014, The impact of light source spectral power distribution on sky glow, Journal of Quantitative Spectroscopy and Radiative Transfer, 139, 21–26.
139. Efremov, A.A., Bochkareva, N.I., Gorbunov, R.I., Lavrinovich, D.A., Rebane, Y.T., Tarkhin, D.V., Shreter, Y.G. 2006, Effect of the joule heating on the quantum efficiency and choice of thermal conditions for high-power blue InGaN/GaN LEDs, Semiconductors, 40 (5), 605–610.
140. Goins, G.D., Yorio, N.C., Sanwo, M.M., Brown, C.S. 1997, Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting, Journal of Experimental Botany, 48 (7), 1407–1413.
141. Xie, R.J., Hirosaki, N. 2007, Silicon-based oxynitride and nitride phosphors for white LEDs—A review, Sci. Technol. Adv. Mater, 8 (7–8), 588-600.
142. Li, H.L., Hirosaki, N., Xie, R.J., Suehiro, T. Mitomo, M. 2007, Fine yellow α-SiAlON:Eu phosphors for white LEDs prepared by the gas-reduction–nitridation method, Sci. Technol. Adv. Mater., 8 (7–8): 601-606.
143. https://en.wikipedia.org/wiki/Phosphor_thermometry, acces date 6/28/2018.
144. Feist, J.P., Heyes, A.L. 2000, The characterization of Y2O2S:Sm powder as a thermographic phosphor for high temperature applications, Measurement Science and Technology, 11 (7), 942–947.
145. Goss, L.P., Smith, A.A., Post, M.E. 1989, Surface thermometry by laser-induced fluorescence, Review of Scientific Instruments, 60 (12), 3702–3706.
146. Feist, J.P., Heyes, A.L., Seefeldt, S. 2003, Thermographic phosphor thermometry for film cooling studies in gas turbine combustors, Journal of Power and Energy, 217, 193–200.
147. Choy, K.L., Feist, J.P., Heyes, A.L., Su, B. 1999, Eu-doped Y2O3 phosphor films produced by electrostatic-assisted chemical vapor deposition, Journal of Materials Research, 14 (7), 3111–3114.
148. Chen, X., Mutasim, Z., Price, J., Feist, J.P., Heyes, A.L., Seefeldt, S. 2005, Industrial sensor TBCs: Studies on temperature detection and durability, International Journal of Applied Ceramic Technology, 2 (5), 414–421.
149. Heyes, A.L., Seefeldt, S., Feist J.P. 2005, Two-colour thermometry for surface temperature measurement, Optics and Laser Technology, 38 (4–6), 257–265.
150. https://en.wikipedia.org/wiki/Thermoluminescence_dating, acces date 6/28/2018.
151. Ķeizars, Z., Forrest, B., Rink, W.J. 2008, Natural Residual Thermoluminescence as a Method of Analysis of Sand Transport along the Coast of the St. Joseph Peninsula, Florida, Journal of Coastal Research, 24, 500-507.
152. Liritzis, I. 2011, Surface Dating by Luminescence: An Overview, Geochronometria, 38(3), 292-302.
153. Rink, W.J., Bartoll, J. 2005, Dating the geometric Nazca lines in the Peruvian desert, Antiquity, 79, 390-401.
154. Sullasi, H.S., Andrade, M.B., Ayta, W.E.F., Frade, M., Sastry, M.D., Watanabe, S. 2004, Irradiation for dating Brazilian fish fossil by thermoluminescence and EPR technique, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 213, 756-760.
155. Tochilin, E.N., Goldstein, W., Miller, G.. 1969, Beryllium oxide as a thermoluminescent dosimeter, Health physics, 16(1), 1-7.
156. Yamashita, T., et al. 1971, Calcium sulfate activated by thulium or dysprosium for thermoluminescence dosimetry, Health physics, 21(2), 295-300.
157. https://en.wikipedia.org/wiki/Gingerol, acces date 6/28/2018.
158. Zick, S.M., Djuric, Z, Ruffin, M.T., Litzinger, A.J., Normolle, D.P., Alrawi, S, Feng, M.R., Brenner, D. E. 2008, Pharmacokinetics of 6-gingerol, 8-gingerol, 10-gingerol, and 6-shogaol and conjugate metabolites in healthy human subjects, Cancer Epidemiology, Biomarkers & Prevention, 17 (8), 1930–1936.
159. Park, M., Bae, J., Lee, D.S. 2008, Antibacterial activity of 10-gingerol and 12-gingerol isolated from ginger rhizome against periodontal bacteria, Phytotherapy Research, 22 (11), 1446–1449.
160. Ueki, S., Miyoshi, M., Shido, O., Hasegawa, J., Watanabe, T. 2008, Systemic administration of [6]-gingerol, a pungent constituent of ginger, induces hypothermia in rats via an inhibitory effect on metabolic rate, European Journal of Pharmacology, 584 (1), 87–92.
161. Funk, J.L., Frye, J.B., Oyarzo, J.N., Timmermann, B.N. 2009, Comparative Effects of Two Gingerol-Containing Zingiber officinale Extracts on Experimental Rheumatoid Arthritis; Journal of Natural Products, 72 (3), 403–407.
162. Semwal, R.B., Semwal, D.K., Combrinck, S., Viljoen, A.M. 2015, Gingerols and shogaols: Important nutraceutical principles from ginger, Phytochemistry, 117, 554–568.
163. Jeong, C.-H.; Bode, A. M.; Pugliese, A.; Cho, Y.-Y.; Kim, H.-G.; Shim, J.-H.; Jeon, Y.-J.; Li, H.; et al. (2009). "[6]-Gingerol Suppresses Colon Cancer Growth by Targeting Leukotriene A4 Hydrolase". Cancer Research. 69 (13): 5584–91.
164. Lee, H; Seo, E; Kang, N; Kim, W (2008). "[6]-Gingerol inhibits metastasis of MDA-MB-231 human breast cancer cells". The Journal of Nutritional Biochemistry. 19 (5): 313–9.
165. Rhode, J., Fogoros, S., Zick, S., Wahl, H., Griffith, K.A., Huang, J., Liu, J.R. 2007, Ginger inhibits cell growth and modulates angiogenic factors in ovarian cancer cells, BMC Complementary and Alternative Medicine, 7, 44.
166. Park, Y.J., Wen, J., Bang, S.W., Song, S.Y. 2006, [6]-Gingerol Induces Cell Cycle Arrest and Cell Death of Mutant p53-expressing Pancreatic Cancer Cells, Yonsei Medical Journal, 47 (5), 688–697.
167. Running, W.E., Buckingham, J. Dictionary of Natural Products, Chapman & Hall/CRC Chapman and Hall, 1st ed., 1982-2003, London, U.K.
168. Kacprzak, K.M. Chemistry and Biology of Cinchona Alkaloids, In: Natural Products, Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes, ed by Ramawat, K.G. and Mérillon, J.M., 2013, Springer-Verlag Berlin Heidelberg, 605-641.
169. https://en.wikipedia.org/wiki/Quinine#cite_ref-3, access date 07/24/2018.
170. https://www.medicines.org.uk/emc/product/4554/smpc, access date 07/24/2018.
171. https://en.wikipedia.org/wiki/Fluorescein, access date 07/24/2018.
172. Noga E.J., Udomkusonsri, P. 2002, Fluorescein: A Rapid, Sensitive, Nonlethal Method for Detecting Skin Ulceration in Fish, Vet Pathol., 39 (6), 726–731.
173. Mathew, T., 2014, Use of Fluorescein Dye to Identify Residual Defect, Ann Thorac Surg, 97 (1), e27–28.
174. El Harrar, N., Idali, B., Moutaouakkil, S., El Belhadji, M., Zaghloul, K.;, Amraoui, A., Benaguida, M. 1996, Anaphylactic shock caused by application of fluorescein on the ocular conjunctiva, Presse ,Médicale, 25 (32): 1546–1547.
175. Fineschi, V., Monasterolo, G., Rosi, R., Turillazz, E. 1999, Fatal anaphylactic shock during a fluorescein angiography, Forensic Sci. Int., 100 (1–2), 137–142.
176. Hitosugi, M., Omura, K., Yokoyama, T., Kawato, H., Motozawa, Y., Nagai, T., Tokudome, S. 2004, An autopsy case of fatal anaphylactic shock following fluorescein angiography: a case report, Med Sci Law, 44 (3), 264–265.
177. Kinsella, F.P., Mooney, D.J. 1988, Anaphylaxis following oral fluorescein angiography, Am. J. Ophthalmol., 106 (6), 745–746.
178. Gómez-Ulla, F., Gutiérrez, C., Seoane, I. 1991, Severe anaphylactic reaction to orally administered fluorescein, Am. J. Ophthalmol., 112 (1), 94.
179. Kwan, A.S., Barry, C., McAllister, I.L., Constable, I. 2006, Fluorescein angiography and adverse drug reactions revisited: the Lions Eye experience, Clin. Experiment. Ophthalmol., 34 (1), 33–38.
180. Jennings, B.J., Mathews, D.E. 1994, Adverse reactions during retinal fluorescein angiography, J Am Optom Assoc, 65 (7), 465–471.
181. Kwiterovich, K.A., Maguire, M.G., Murphy, R.P., Schachat, AP., Bressler, N.M., Bressler, S.B., Fine, S.L. 1991, Frequency of adverse systemic reactions after fluorescein angiography. Results of a prospective study, Ophthalmology, 98 (7), 1139–1142.
182. Matsuura, M., Ando, F., Fukumoto, K., Kyogane, I., Torii, Y., Matsuura, M. 1996, Usefulness of the prick test for anaphylactoid reaction in intravenous fluorescein administration, Nippon Ganka Gakkai Zasshi, 100 (4), 313–317.
183. Ellis, P.P., Schoenberger, M., Rendi, M.A 1980, Antihistamines as prophylaxis against side reactions to intravenous fluorescein, Trans Am Ophthalmol Soc, 78, 190–205.
184. Yang C.S., Sung, C.S., Lee, F.L., Hsu, W.M. 2007, Management of anaphylactic shock during intravenous fluorescein angiography at an outpatient clinic, J Chin Med Assoc, 70 (8), 348–349.
185. Sun, W.C., Gee, K.R., Klaubert, D.H., Haugland, R.P. 1997, Synthesis of Fluorinated Fluoresceins, The Journal of Organic Chemistry, 62 (19), 6469–6475.
186. Burgess, K., Ueno, Y., Jiao, G.S. 2004, Preparation of 5- and 6-Carboxyfluorescein, Synthesis, 15, 2591–2593.
187. Weng, C. , Chou, C. , Ho, C. and Yen, G. 2012, Molecular mechanism inhibiting human hepatocarcinoma cell invasion by 6‐shogaol and 6‐gingerol, Mol. Nutr. Food Res., 56, 1304-1314.
188. Zamani, N., Hosseini, E., Modaresi, M., Pirbalouti, A.G. 2017, Investigating the prenatal exposure of hydro-alcoholic extract of ginger on the function of Pituitary - Gonad axis in male mature offspring rats, Middle East Journal of Family Medicine, 15 (6), 141-148.
189. Hsiang, C.Y., Cheng, H.M., Lo, H.Y., Li, C.C., Chou, P.C., Lee, Y.C., Ho, T.Y. 2015, Ginger and Zingerone Ameliorate Lipopolysaccharide-Induced Acute Systemic Inflammation in Mice Assessed by Nuclear Factor-κB Bioluminescent Imaging. J Agric Food Chem, 63(26), 6051-6058.
190. Kukula-Koch, W., Koch, W., Czernicka, L., Głowniak, K., Asakawa, Y., Umeyama, A., Marzec, Z., Kuzuhara, T. 2018, MAO-A Inhibitory Potential of Terpene Constituents from Ginger Rhizomes-A Bioactivity Guided Fractionation, Molecules, 23(6). pii: E1301. doi: 10.3390/molecules23061301.
191. Anindita, M., Gryczynski, I., Sørensen, T.J., Jamboor K.V., Amalendu, P. Ranjan, A.P. Raut, S., Gryczynski, Z. 2010, Spectroscopic Properties of Curcumin: Orientation of Transition Moments, J. Phys. Chem. B, 114, 12679–12684.
192. Pan, M.H., Hsieh, M.C., Hsu, P.C., Ho, S.Y., Lai, C.S., Wu, H., Sang, S., Ho, C.T. 2008, 6-Shogaol suppressed lipopolysaccharide-induced up-expression of iNOS and COX-2 in murine macrophages, Mol. Nutr. Food Res., 52, 1467 – 1477.
193. Drobnik, J., Yeargers, E. 1966, On the use of quinine sulfate as a fluorescent standard, Journal of Molecular Spectroscopy, 19 (1–4), 454-455.
194. Fletcher, B.L., Dillard, C.J., Tappel, A.L. 1973, Measurement of fluorescent lipid peroxidation products in biological systems and tissues, Analytical Biochemistry, 52 (1), 1-9.
195. Tucker, S.A., Amszi, V.L., Acree, W.E. 1992, Primary and secondary inner filtering. Effect of K2Cr2O7 on fluorescence emission intensities of quinine sulfate, Journal of Chemical Education, 69 (1), A8.
196. Fletcher, A.N. 1969, Quinine sulfate as a fluorescence quantum yield, Photochemistry and Photobiology, 9, 439-444.
197. Lawaetz, A.J., Stedmon, C.A. 2009, Fluorescence Intensity Calibration Using the Raman Scatter Peak of Water, Applied Spectroscopy, 63 (8), 936-940.
198. Heller, C.A., Henry, R.A., McLaughlin, B.A., Blis, D.E. 1974, Fluorescence Spectra and Quantum Yields: Quinine, Uranine, 9,10-Diphenylanthracene, and 9,10-Bis(phenylethynyI)anthracenes, Journal of Chemical and Engineering Data, 19 (3), 214-219.
199. Velapoldi, R.A., Mielenz, K. D. Standard Reference Materials: A Fluorescence Standard Reference Material: Quinine Sulfate Dihydrate, NBS special publication 260-64 U.S. Department of Commerce / National Bureau of Standards, U.S. Government Printing Office, 1980, Washington D.C. U.S.A.
200. Eastman, J.W. 1967, Quantitative spectrofluorimetry the fluorescence quantum yield of quinine sulfate, Photochemistry and Photobiology, 6, 55-72.
201. Stock, J.T. 2002, Edgar Buckingham: Fluorescence of quinine salts, Bull. Hist. Chem., 27(1), 57-61.