Servicios
Servicios
Buscar
Idiomas
P. Completa
Productividad de patentes y capacidades de innovación en las entidades federativas de México
Jorge Inés León Balderrama; Yazmín Del Castillo García; Juan Martín Preciado Rodríguez
Jorge Inés León Balderrama; Yazmín Del Castillo García; Juan Martín Preciado Rodríguez
Productividad de patentes y capacidades de innovación en las entidades federativas de México
Patent Productivity and Innovation Capabilities in the States of Mexico
Paradigma económico. Revista de economía regional y sectorial, vol. 10, núm. 1, pp. 49-80, 2018
Universidad Autónoma del Estado de México
resúmenes
secciones
referencias
imágenes

Resumen: En esta investigación se busca identificar los factores que pueden explicar el desempeño desigual de las entidades federativas de México en cuanto a la generación de innovaciones. Para ello se adapta el enfoque de las “capacidades de innovación”, desarrollado por algunos autores europeos y aplicado a contextos subnacionales. Según este enfoque, las capacidades de innovación de los territorios están compuestas básicamente de: a) la capacidad de creación de conocimiento; b) la capacidad de absorción de tecnologías; c) la capacidad de difusión de tecnologías, y; d) la capacidad de demanda/mercado de las regiones.

Para analizar el impacto de estos factores sobre la productividad de patentes de los estados mexicanos se emplean 17 indicadores, bajo un modelo de regresión múltiple. De acuerdo con los resultados, la capacidad regional de absorción de tecnologías —conformada por las variables de población con posgrado, posgrados PNPC y becas Conacyt— es el factor que en mayor grado impacta en el desempeño en innovación de las entidades federativas de México.

Palabras clave:patentespatentes,capacidades de innovacióncapacidades de innovación,entidades federativasentidades federativas.

Abstract: This research seeks to identify the factors that may explain the unequal performance of the states of Mexico in terms of generating innovations. To this end, the “innovation capabilities” approach, developed by some European authors and adapted to subnational contexts, is adapted. According to this approach, the innovation capacities of the territories are basically composed of: a) the capacity to create knowledge; b) the capacity to absorb technologies; c) the technology diffusion capacity, and; d) the demand / market capacity of the regions.

To analyze the impact of these factors on the productivity of patents in the Mexican states, 17 indicators are used, in a multiple regression model. The results show that the regional capacity of absorption of technologies —conformed by the variables of population with postgraduate, postgraduate in PNPC program and Conacyt scholarships— is the factor that to a greater extent impacts on the performance of innovation in the states of Mexico.

Keywords: patents, innovation capabilities, federative entities.

Carátula del artículo

Productividad de patentes y capacidades de innovación en las entidades federativas de México

Patent Productivity and Innovation Capabilities in the States of Mexico

Jorge Inés León Balderramaa
Centro de Investigación en Alimentación y Desarrollo, A. C, México
Yazmín Del Castillo Garcíab
Centro de Investigación en Alimentación y Desarrollo, México
Juan Martín Preciado Rodríguezc
Centro de Investigación en Alimentación y Desarrollo, México
Paradigma económico. Revista de economía regional y sectorial, vol. 10, núm. 1, pp. 49-80, 2018
Universidad Autónoma del Estado de México

Recepción: 10 Marzo 2017

Aprobación: 24 Noviembre 2017

Introducción

En esta nueva era signada por la globalización y el acelerado cambio tecnológico, la innovación se ha posicionado como un elemento esencial para el desarrollo económico y la competitividad de las naciones. Hoy en día, la innovación constituye una ventaja competitiva sostenible y un medio de hacer frente a los retos actuales. Los tomadores de decisiones, los empresarios, las organizaciones sociales y científicas de los países están cada vez más conscientes de la relevancia de la innovación como elemento favorecedor del crecimiento a largo plazo (Chandra et al., 2012).

Los efectos de la globalización y las transformaciones económicas, políticas y socioculturales han exigido replantear las estrategias para tener resultados en la innovación, no sólo desde un enfoque nacional, sino también desde una perspectiva regional o local. Organismos internacionales como la OCDE, la Unión Europea (UE) y el Banco Interamericano de Desarrollo (BID) han dado énfasis a la importancia de las regiones dentro del marco de la innovación y cómo la inversión para la innovación regional es un determinante para el desarrollo económico y tecnológico, al ser un impulsor para la recuperación económica y en el desarrollo de destrezas económicas (OCDE, 2009).

Hoy en día, el futuro de México depende de la capacidad de competir, producir e innovar. En México las entidades federativas mexicanas presentan 42 años de rezago en innovación con respecto a otras regiones de Europa, que captan inversión para la generación de empleos y también financian con recursos públicos y privados el desarrollo de ciencia y tecnología (Aregional, 2010).

El uso de datos sobre patentes como indicadores de la innovación y el cambio tecnológico tiene una larga tradición, sin embargo, no es una cuestión exenta de discusión. Grilinches (1990) estudió mediante encuestas las ventajas y desventajas de las estadísticas de patentes con estos propósitos. Las estadísticas de patentes son un indicador de resultado de la innovación, más que de insumo, como es el caso de las inversiones en investigación y desarrollo tecnológico (I+D). Su principal ventaja es la disponibilidad de las estadísticas sobre patentes por periodos prolongados, aparte de proveer de información tecnológica detallada. La principal desventaja es que el simple conteo de patentamientos no informa sobre la calidad y relevancia de las innovaciones, además las patentes no son aplicadas necesariamente y hay propensiones distintas a patentar entre sectores (Verspagen, 2007). Pero, finalmente, las patentes son reconocidas como una fuente de datos significativa para el estudio de la innovación, y pueden ser una medida confiable para medir la actividad innovadora tanto de un país, región o sector económico (Buesa et al., 2010).

En esta investigación se retoma el enfoque de Furmann, Porter y Stern (2002), quienes proponen el empleo de un modelo econométrico que permite cuantificar los “factores determinantes” de la capacidad nacional de innovación (CNI) partiendo del caso de los países de la OCDE. El objetivo principal es determinar cuáles son los factores impulsores de la innovación en las entidades federativas y, en consecuencia, cuáles de ellos deben ser tenidos especialmente en cuenta a la hora de diseñar políticas tecnológicas.

En México se ha dado poca importancia al estudio de la distribución y concentración espacial de la innovación (medida por las patentes), existiendo escasas investigaciones al respecto y, por lo tanto, pocos datos contundentes. En los estudios existentes se han considerado factores como el capital humano y la infraestructura tecnológica como determinantes importantes de la generación de patentes, principalmente las generadas por los centros de investigación y universidades (Germán Soto et al., 2009; Germán Soto y Gutiérrez, 2015). Parece obvio que las entidades federativas con mejor infraestructura para el desarrollo tecnológico y mayor dotación de capital físico y humano para la producción tienen una mayor concentración de la actividad innovadora. Al analizar el número de patentes solicitadas durante el 2010, por ejemplo, por titulares mexicanos y entidad federativa, se observa que el Distrito Federal concentra el mayor número: con 321 patentes, seguido por Nuevo León con 110, Estado de México con 80 y Jalisco con 701 (FCCyT, 2014).

El objetivo general del presente estudio es identificar en qué medida ciertas capacidades desarrolladas desigualmente en los estados condicionan su desempeño en productividad de innovaciones tecnológica, medida por la generación de patentes Para tal propósito se adopta el enfoque de las capacidades regionales de innovación como fundamento teórico conceptual, claramente relacionado con el de los sistemas de innovación, adaptándolo al contexto mexicano. Para cumplir con este propósito, el estudio busca definir un modelo con la integración de las variables que determinan o predicen la productividad de las entidades en la generación de innovaciones

En la primera sección se presenta una revisión de estudios previos para conformar los antecedentes conceptuales y empíricos de esta investigación. En la segunda, se expone el marco conceptual propuesto por Radosevic (2004) y Muller et al. (2006) sobre las capacidades de innovación, incluyendo las capacidades de creación de conocimiento, absorción, difusión y demanda, pues este enfoque permite analizar y comprender la generación de innovaciones desde un enfoque territorial multidimensional. En la tercera sección se describe el método empleado en este estudio. En tanto en la cuarta, se presentan los resultados descriptivos, la matriz de correlación, el análisis factorial y se finaliza con el análisis de regresión múltiple. Además de describir los resultados, se plantean argumentos de explicación y se discuten los principales hallazgos. Finalmente, se presentan las principales conclusiones y reflexiones finales sobre las limitaciones del trabajo y las propuestas de futuras líneas de investigación sobre el tema tratado.

1. Estudios previos sobre determinantes de la generación de innovaciones en regiones y entidades

La localización espacial de las innovaciones ha sido un aspecto importante dentro del estudio de la relación entre el crecimiento económico y los sistemas nacionales de innovación, siendo la concentración territorial una de sus principales características. Para Feldman y Audrescht (1999), existen dos líneas principales en la investigación económica aplicada sobre innovación y su localización:

  1. a. La primera considera la dimensión geográfica como uno de los determinantes de la innovación y examina la influencia que la proximidad geográfica tiene sobre la transmisión y aprovechamiento de conocimientos tecnológicos;

  2. b. La segunda examina las diferencias en los niveles de crecimiento y productividad de las distintas regiones, con la introducción de la innovación como una variable explicativa e incidiendo en los efectos que la localización comporta sobre los resultados económicos de las diferentes regiones o áreas geográficas.

Estudios previos han abordado la distribución territorial de las innovaciones y sus determinantes desde diferentes perspectivas. La mayor parte de estos estudios asumen que la concentración de las actividades de innovación en algunos territorios es una tendencia inherente a los sistemas económicos modernos, y esta concentración llega incluso a ser mayor a la observada en la actividad económica en general.

En el cuadro 1 se han seleccionado una serie de estudios sobre la investigación de los determinantes de la productividad de innovaciones en los niveles regional y subnacional. Especialmente se han seleccionado aquellos análisis que han destacado los factores relacionados con las capacidades regionales. Estos estudios corresponden a distintas áreas del mundo, como Europa, Norteamérica, China y México en el periodo 1997-2017. Las unidades de análisis de estos estudios se circunscriben a las delimitaciones político administrativas subnacionales de los países (provincias o entidades federativas), o bien, a regiones económicas. En todos estos estudios se emplean datos secundarios a nivel macro como indicadores de la producción de innovaciones de las regiones, específicamente los concernientes a patentes solicitadas o concedidas, provenientes de organismos gubernamentales encargados de registrarlas. Sin embargo, en el caso de las variables consideradas para explicar las diferencias regionales en la productividad de innovaciones las diferencias son notables. Los estudios más antiguos de esta selección se enfocaron casi exclusivamente en factores relacionados con los recursos y capacidades para realizar actividades de I+D (infraestructura, recursos financieros, personal dedicado, gasto privado y del gobierno en I+D). Otro aspecto sobresaliente en los estudios más antiguos es la presencia en las regiones de empresas de alta tecnología (con capacidades mayores de I+D) como un determinante clave de la capacidad de innovación de las regiones, y un papel muy importante aducido a la I+D llevada a cabo en las universidades y centros de investigación ubicados en los territorios.

Cuadro 1
Selección de estudios previos sobre los determinantes de la generación de innovaciones en las regiones/estados

Cuadro 1 (cont. 1)
Selección de estudios previos sobre los determinantes de la generación de innovaciones en las regiones/estados

Cuadro 1 (cont. 2)
Selección de estudios previos sobre los determinantes de la generación de innovaciones en las regiones/estados

Hacia 2003 se presenta un giro importante en estos estudios, porque el foco exclusivo en la I+D y sus insumos resulta insuficiente para comprender las divergencias regionales en crecimiento económico y desarrollo tecnológico. Para entender estas diferencias, los estudios empiezan a fundamentar sus análisis en esquemas conceptuales más multidimensionales, es decir, capturan varias dimensiones también relevantes que determinan la capacidad de innovación de las regiones.

A partir de entonces se empieza hablar de capacidades distintas a la capacidad regional de I+D, fenómeno impulsado por varios procesos:

  1. a) Primero, el reconocimiento de la insuficiencia de los enfoques basados en la nueva teoría del crecimiento y en los “stocks de infraestructura de I+D”;

  2. b) Segundo, la influencia de los reportes de la Commission of European Communities (2001, 2002) con la publicación de los Innovation Scoreboards (compendios de indicadores más diversos sobre las capacidades de innovación de las regiones europeas), por un lado, y una publicación muy influyente realizada por Furman, Porter y Stern (2002) sobre las capacidades nacionales de innovación, por otro; y

  3. c) Tercero, la creciente disponibilidad de datos ha vuelto cada vez más popular el uso de indicadores compuestos o multinivel.

Los métodos de tratamiento de los datos se han venido haciendo cada vez más sofisticados. De los análisis simples de correlación o de regresión simple, se ha pasado a los análisis multivariante más complejos o la combinación de varios métodos de análisis estadístico, la construcción de índices compuestos y los análisis de eficiencia basados en nuevos métodos.

En el caso de los estudios sobre las regiones de México, también se pueden constatar las tendencias de análisis descritas anteriormente, pues en el estudio de Sánchez Tovar et al. (2014) es posible apreciar una inflexión hacia la incorporación de nuevas dimensiones cuando se aborda el estudio de las capacidades de innovación, que se comprueba en la inclusión de factores como la estructura económica y productiva.

Siguiendo la línea de investigación representada por este conjunto de estudios con el objetivo de identificar los factores determinantes en la dinámica regional desigual de la generación de innovaciones, en este trabajo se adopta el enfoque de las Capacidades Regionales de Innovación (CRI), concepto derivado del originalmente desarrollado por Furman, Porter y Stern (2002) y posteriormente desarrollado y adaptado a contextos sub nacionales/regionales por algunos autores europeos (Radosevich 2004; Muller 2006). En el siguiente apartado se realiza una descripción de este enfoque, de acuerdo con sus aportes más recientes.

2. El enfoque de las capacidades regionales de innovación (CRI)

El estudio de las “capacidades de innovación” en gran medida se ha basado en el conjunto de aportaciones derivadas del enfoque de los sistemas nacionales de innovación realizados por Lundvall (1992), Nelson y Winter (1982), y Edquist (1997).

La ciencia y tecnología, según la literatura reciente, se encuentran fuertemente vinculadas a las capacidades de innovación; está línea de investigación es particularmente importante cuando se revisan las experiencias recientes de economías, países, o regiones de los países en vías de desarrollo. Según este enfoque, los países o regiones que invierten en sus capacidades de innovación tienen una ventaja acumulativa y competitiva sobres sus rivales, además enfatiza que el conocimiento tecnológico no se distribuye de manera homogénea, porque depende de sus esfuerzos previos y el desarrollo de capacidades (Lall, 1992).

El concepto capacidad de innovación tiene como característica ser multidimensional, autores como Furman et al. (2002), Porter (1999), Radosevic (2004), Muller et al. (2006), Castellaci y Natera (2012) han abordado desde diferentes enfoques. A pesar de ser considerado como un concepto altamente estilizado, nos provee de una primera definición clave para estudiar la evolución de los Sistemas Regionales de Innovación (Castelllaci y Natera, 2012).

La capacidad de innovación representa los esfuerzos y las inversiones totales llevadas a cabo por los países (o regiones) para la realización de actividades de I+D y de innovación. Es una expresión del resultado de las actividades de investigación e innovación. Esta es la producción total de las actividades tecnológicas e innovadoras.

El desarrollo socioeconómico nacional y regional es impulsado por la capacidad de innovación (Furman et al., 2002). En esta propuesta, la capacidad de innovación no debe reducirse a la inversión en I+D y las actividades relacionadas, sino mediante la comprensión de (i) capacidad de absorción, (ii) capacidad de difusión de nuevo conocimiento,(iii) demanda para su generación y utilización. Es decir, las actividades I+D constituyen el núcleo de los procesos de innovación y el entendimiento de las capacidades de innovación, en particular cuando se adopta una perspectiva regional, no debe reducirse a esta limitante o ser una observación general de la creación de conocimiento.

Furman et al. (2002) definen la capacidad de innovación como la capacidad de un país para producir y comercializar un flujo de tecnología innovadora a largo plazo. De igual manera Porter et al. (2002) señalan que la capacidad de innovación es el resultado de diferentes factores, como la mano de obra calificada y la calidad física de la infraestructura.

El crecimiento y la capacidad de innovación de una economía dependen no solamente de la I+D, sino también de su capacidad de absorber y difundir la tecnología, así como de la demanda para su generación y explotación. Las capacidades de innovación como marco conceptual son el resultado de diferentes estudios de innovación y competitividad, pues permiten la comprensión de las actividades innovadoras de una región.

Para Radosevic (2004), entender la capacidad de innovación es ir más allá de I+D, por eso propone una clasificación de indicadores basándose en el enfoque de sistema nacional de innovación. Radosevic (2004) toma como guía el modelo conceptual de la Capacidad Nacional de Innovación (CNI) de Furman et al. (2002), donde se explica la relación entre los diferentes elementos del marco de capacidad de innovación. En la figura 1 se observan las dimensiones del modelo y estos indicadores se agrupan en: a) suministro de I+D, b) capacidad de absorción, d) capacidad de difusión; y, d) demanda.


Figura 1
Dimensiones de la capacidad nacional de innovación propuestas por Radosevic
Fuente: Radosevic (2004).

En desarrollos posteriores de este enfoque, Castellaci y Natera (2012) consideran que las dinámicas de los sistemas de innovación son impulsadas por dos dimensiones: la capacidad de innovación y la capacidad de absorción (figura 2). Para ellos, las capacidades de innovación y de absorción están vinculadas por un conjunto de relaciones dinámicas y su proceso de co-evolución representa un mecanismo clave para el crecimiento del sistema nacional de investigación a largo plazo.


Figura 2
La co-evolución de las capacidades de innovación y absorción (CIA)
Fuente: Castellaci y Natera (2012).

Para Castellaci y Natera (2012), la capacidad de innovación se constituye por tres elementos: i) entradas innovadoras (total de gastos en I+D como porcentaje del PIB); ii) la producción científica (número de artículos de revistas científicas) y; iii) la producción tecnológica (número de patentes registradas). En cuanto a la capacidad de absorción se compone por el comercio internacional, el capital humano, la infraestructura, la calidad de las instituciones y la cohesión social. La capacidad de innovación y la capacidad de absorción están directamente vinculadas al crecimiento del PIB per cápita, por lo que el nivel de ingreso define el nivel económico y el desarrollo social de un país.

Muller et al. (2006) desarrollan una adaptación de la propuesta de Radosevic, mediante la integración de diferentes componentes de la capacidad de innovación a un nivel regional. Estos autores retoman la perspectiva del sistema de innovación, el cual corresponde a una visión evolucionaria de las actividades de innovación como una continuación de los trabajos realizados por Nelson y Winter (1974), y Lundvall (1988). A su vez el análisis desarrollado en Europa por Radosevic (2004) y el desarrollo de las regiones dentro de la Unión Europea se permite realizar un marco multidimensional para estudiar la innovación mediante cinco dimensiones. Sin embargo, a diferencia de Radosevich, el modelo propuesto por Muller y colaboradores incorpora la capacidad de gobernanza, la cual consideran necesaria para coordinar las cuatro dimensiones en diferentes niveles (figura 3).


Figura 3
El enfoque de la capacidad nacional de innovación (CNI) de Muller
Fuente: Muller et al. (2006).

Retomando a Radosevich (2004), a continuación se definen someramente las distintas dimensiones de la capacidad de innovación regional.

  1. 1) La capacidad de creación de conocimiento es importante no sólo para generar nuevo conocimiento, sino también como un mecanismo para absorberlo (Cohen y Levinthal, 1990). Este es un elemento crucial de la capacidad de innovación, el cual puede ser descrito con indicadores como gastos en I+D y capital humano, la concentración de inventores de patentes, así como las publicaciones en el campo de la biociencia y nanotecnología. La capacidad en I+D es importante, ya que, además de generar conocimiento, también es un mecanismo para absorber este conocimiento.

  2. 2) La capacidad de absorción es un concepto utilizado para describir la capacidad de una empresa (o un territorio) para reconocer el valor de nuevos conocimientos externos, de asimilarlo y aplicarlo a fines comerciales (Cohen y Levinthal, 1990; Zahra y George, 2002). Para Abramovitz (1986, 1996), la capacidad de absorción se puede definir como las características tecnoeconómicas (dotación de recursos, oferta de factores, capacidades tecnológicas, escalas del mercado y demandas de los consumidores), así como las condiciones socio-institucionales (nivel de educación, competencias técnicas de las instituciones), que influyen en la capacidad de adquirir, asimilar, transformar y explotar el conocimiento para fortalecer la competitividad de una región o país.

  3. 3) La capacidad de difusión del conocimiento de una región son los recursos, capacidades y competencias de una región para poner en marcha procesos de difusión del conocimiento. De acuerdo con Lan y colaboradores, la difusión del conocimiento es el “proceso en que el conocimiento se difunde desde su origen hacia el exterior o de sus productores a sus usuarios, por el mercado u otros canales de distribución. La difusión del conocimiento es un proceso de aprendizaje y la diseminación social y espacial del conocimiento en un espacio más amplio” (Lan et al., 2009: 1). Esta capacidad está íntimamente relacionada con las TICs, herramientas para actividades relacionadas a la ciencia, tecnología e innovación (CTI), ya que permiten a los científicos y tecnólogos estar en contacto y trabajar con diferentes personas ubicadas en distintas partes del mundo, lo cual incrementa su productividad y permite la generación de nuevos conocimientos y tecnologías (Ruiz Durán, 2008).

  4. 4) Capacidad de demanda/mercado. La concretización de la innovación implica la comercialización de los productos y servicios generados por la investigación y el desarrollo. Es decir, parte del éxito de las innovaciones reside en tener un mercado adecuado en términos de la demanda de los productos y servicios generados. Además, considerando las dificultades de la distancia geográfica ligadas a costos de transacciones, costos de transporte o la disponibilidad de canales de distribución adecuados, el mercado regional generará grandes oportunidades para la mayoría de las empresas involucradas en el sistema regional de innovación. Esta dimensión busca reflejar la potencialidad de la demanda existente para las innovaciones generadas en la región, a través de los indicadores de producto interno bruto, densidad poblacional e ingreso bruto per cápita (Miles et al., 2009; Valdez-Lafarga y León, 2015).


Figura 4
Capacidad Regional de Innovación
Fuente: elaboración propia con base en Muller (2006).

Finalmente, el modelo para este trabajo queda definido en la figura 4, en el cual la capacidad regional de innovación se fundamenta en 4 tipos o dimensiones de capacidades. La capacidad de gobernanza no se considera en este estudio debido a la dificultad de su medición.

3. Información y método de análisis
3.1 Indicadores e información utilizada

  1. a) Las patentes como indicador del nivel de innovación en las entidades.

    Estudios como Pavitt (1985), Griliches, (1990), Acs y Audretsch (2002) han resaltado la utilidad de las patentes como indicador del “esfuerzo” tecnológico y del grado de desarrollo tecnológico de una determinada región, ello permite en este estudio utilizar como variable dependiente la solicitud de patentes.

    Estas son algunas ventajas que las patentes tienen en comparación con las inversiones en I+D:

    • las estadísticas de patentes permiten medir la capacidad inventiva de países, regiones, empresas o inventores individuales, pues reflejan los resultados de la actividad inventiva (OCDE, 2009);

    • contienen información relevante sobre el proceso de innovación, como el campo tecnológico, la localización geográfica de los inventores y titulares, los tipos de inventores en términos del campo de especialización (Hall, Jaffe y Trajtenberg, 2001);

    • cubren un amplio abanico de tecnologías, en ocasiones no disponibles en otras fuentes de datos (OCDE, 2009);

    • los datos de patentes pueden obtenerse con relativa facilidad y tienen alta disponibilidad. En México, las patentes se pueden consultar en el Instituto Mexicano de la Propiedad Intelectual (IMPI) publicados en el Sistema de Información de la Gaceta de la Propiedad Industrial (SIGA).

    Sin embargo, las patentes presentan varias limitaciones a considerar en el momento de interpretar los resultados, particularmente en los casos en que la región presenta una considerable diversidad sectorial. Primero las patentes no son el único mecanismo de protección existente (secreto industrial), por eso no todas las invenciones se patentan, asimismo existen restricciones sobre el tipo de invenciones que pueden ser patentadas. Las patentes difieren en su trascendencia técnica y económica, muchas de ellas reflejan pocas mejoras o poco valor económico (Griliches, 1990), además se deben considerar las diferentes tendencias de los países y las empresas para patentar (OCDE, 2011).

    Las desventajas en el uso de las estadísticas de patentes pueden contrarrestarse mediante otras metodologías para superar las limitaciones de los datos. Autores como Ács y Audretsch (1989) muestran que los análisis de regresión basados en patentes ofrecen resultados muy comparables con aquellos basados en medidas más directas para medir la innovación, ello permite considerar la tasa de crecimiento de las patentes como un proxy efectivo para los cambios de la actividad innovadora local.

  2. b) Indicadores para la medición de las dimensiones de la CRI.

    El análisis se basa en una serie de 17 indicadores correspondientes a los 32 estados de México, obtenidos de fuentes oficiales en publicaciones regulares. Esta información fue clasificada en 4 categorías correspondientes a las 4 dimensiones de la CRI. Como ya se ha anotado, en este estudio se toma como principal referencia conceptual el enfoque de capacidades de innovación propuesto por Radosevich (2004) y adaptado al nivel regional por Muller et al. (2006), por ello se sigue la forma en que estos autores han “operacionalizado” las capacidades de innovación de los territorios para proponer una serie de indicadores destinados a medir las diferentes dimensiones de este constructo.

    En lo concerniente a la capacidad de creación de conocimiento, para evaluar y medir la capacidad representada por los recursos humanos, estos autores recurren a datos de personal ocupado en actividades de I+D en las empresas, estadística no disponible en nuestro país. Se ha seleccionado el número de investigadores SNI como alternativa a este indicador específico. De igual forma, ante la imposibilidad de disponer de estadísticas por estado del gasto público y privado en I+D, se elige la proporción de los presupuestos locales destinados a estas actividades y el número de centros de investigación como un proxy de los recursos y capacidades para la creación de conocimiento. Asimismo, se retoman los datos de publicaciones como un indicador adecuado para estos fines (cuadro 2).

Cuadro 2
Definición de los indicadores por dimensión de la capacidad regional de innovación

Para el caso de la capacidad de absorción, los autores mencionados utilizan datos que reflejen la calidad y competencias de la población para realizar actividades de I+D. La población con posgrado, el número de becarios y el número de posgrados considerados de alta calidad son los indicadores elegidos para este propósito en el caso de nuestro estudio. El gasto educativo per cápita es otro indicador de esta capacidad particular.

Los indicadores de dotación de infraestructura de las comunicaciones por estado, el grado de difusión de las TICs en los hogares, la penetración de nuevas formas de gestión en las empresas, son el tipo de datos incluidos para estimar las diferencias de capacidad de difusión de las nuevas tecnologías en las entidades, todo ello también en concordancia con lo planteado por los autores citados en esta sección. Por último, se seleccionaron datos que permitieran estimar las diferencias por estado en cuanto a cantidad y calidad de los consumidores y usuarios de las nuevas tecnologías, es decir, del mercado o demanda de las nuevas tecnologías.

3.2 Procedimientos estadísticos

El análisis estadístico se realizó en varias etapas:

  1. a) Depuración y estandarización de los datos

    Como puede apreciarse en el cuadro 2, los datos utilizados son de naturaleza diversa. La mayor parte son tasas o coeficientes, pero algunos de ellos son datos logarítmicos, simples promedios o datos absolutos, como en el caso del PIB per cápita por estado. Por lo anterior, fue necesario realizar una tipificación o estandarización de la base de datos, esta transformación de variables se realizó con el fin de facilitar la comparación entre variables con unidades distintas, así como para permitir la obtención de valores ponderados cuando se agregan dos o más variables en un solo factor.

  2. b) Estadísticas descriptivas

    Se llevó a cabo un análisis descriptivo para observar el comportamiento de las variables ligadas a las capacidades de innovación, en cuanto a las medidas de tendencia central y distribución por entidades. Asimismo, en esta etapa se realizó un análisis de correlación.

  3. c) Análisis factorial

    En la segunda etapa se procedió a realizar un análisis factorial exploratorio para identificar los componentes principales asociados a cada capacidad de innovación mediante el análisis de estos componentes y así reducir las variables en ellos; y, a su vez, poder llevar a cabo, posteriormente, la selección de los factores predictores de la tasa de productividad de patentes en las entidades, sobre la base de un menor número de variables.

  4. d) Elección del modelo: el método stepwise o paso a paso

    Para la elaboración del modelo explicativo del nivel de producción de innovaciones de las entidades en función de las capacidades de innovación, se procedió elaborar un modelo de regresión lineal múltiple mediante el método de pasos sucesivos, éste permite la selección de variables una a una, para llegar a un modelo que garantice un nivel de “bondad” de ajuste más alto. Finalmente, se realizó un análisis de normalidad de los residuales con el fin de probar el modelo resultante.

4. Resultados
4.1 Estadística descriptiva y correlación

Las estimaciones del nivel de generación de innovaciones en las entidades medido por el número de patentes solicitadas por cada millón de habitantes muestran una notable disparidad o divergencia. La distribución geográfica de esta variable se encuentra marcadamente concentrada en unas pocas entidades, sólo 10 de las entidades se encuentran por encima de la media nacional (5.2 patentes por millón), siendo las entidades más destacadas el D.F. (26.3), Nuevo León (18.9), Morelos (17.3), Querétaro (14.0), Jalisco (9.3), Guanajuato (7.9), Coahuila (7.6), Chihuahua (7.3), Sonora (6.8) y Yucatán (6.2). Por el contrario, 22 entidades se encuentran por debajo de la media nacional, siendo las entidades en mayor desventaja Zacatecas (0.0), Nayarit (0.1), Chiapas (0.2), Oaxaca (0.3), Guerrero (0.3),Veracruz (0.8), Sinaloa (0.8) y Tabasco (0.98), con menos de una patente por cada millón de habitantes.

De igual forma, en el cuadro 3 se puede observar la enorme disparidad existente en el país en relación con las capacidades de innovación. En este cuadro se pueden apreciar las marcadas diferencias entre los valores máximos y mínimos para los distintos indicadores de las 4 CRI básicas definidas y que evaluaremos para estimar su peso como determinantes de la producción estatal de innovaciones.

Cuadro 3
Estadísticas descriptivas de las capacidades de innovación de las entidades federativas

Fuente: elaboración propia.

Los coeficientes de correlación obtenidos (cuadro 4) muestran una asociación positiva y significativa entre el nivel de generación de patentes de las entidades federativas y las capacidades regionales de innovación. En el caso de los indicadores de la capacidad de creación de conocimiento, la correlación es alta y muy significativa con investigadores SNI, centros de investigación y publicaciones, pero resulta no significativa para la variable Presupuesto local para CTI. Por otra parte, la correlación entre la variable patentes y los indicadores de la capacidad absorción de conocimiento es alta y muy significativa, particularmente con la población con posgrado y los posgrados de calidad, aunque media para el gasto en educación. Las patentes solicitadas tienen también una correlación media alta con 4 de los 5 indicadores de la capacidad de difusión de las nuevas tecnologías y las innovaciones. En contraste, el grado de correlación entre patentes y los indicadores de la capacidad de demanda es bajo y no significativo, con excepción de la variable densidad de población.

4.2 Análisis factorial: análisis de componentes principales (acp)

En esta sección se presentan los resultados del análisis factorial, una técnica estadística de síntesis de la información, o reducción de la dimensión a un menor número de variables, aplicado en este estudio a los 17 indicadores seleccionados originalmente para la medición de las capacidades de creación, absorción, difusión y demanda del conocimiento.

En el cuadro 5, la columna 2 y 3 muestran el peso factorial de los indicadores y la forma en que las dimensiones se agrupan en 2 componentes principales (componente 1 y componente 2); la quinta columna indica el porcentaje de la varianza explicado por los componentes principales. El estadístico KMO, en la cuarta columna, es la medida de la adecuación muestral de Kaiser-Meyer-Olkin y contrasta si las correlaciones parciales entre las variables son suficientemente pequeñas. El estadístico KMO varía entre 0 y 1. Los valores pequeños indican que el análisis factorial puede no ser una buena idea, pues las correlaciones entre los pares de variables no pueden ser explicadas por otras variables. Los menores de 0,5 sugieren que el análisis factorial no debe utilizarse con los datos muestrales analizados. Los últimas tres columnas muestran los resultados del Test de esfericidad de Barlett, realizado para comprobar si las correlaciones entre las variables son distintas de cero de modo significativo, se comprueba si el determinante de la matriz es distinto de uno, es decir, si la matriz de correlaciones es distinta de la matriz unidad.

Cuadro 4
Correlación entre los indicadores seleccionados

Fuente: elaboración propia. Notas: * La correlación es significante al nivel 0,05 (bilateral).

** La correlación es significativa al nivel 0,01 (bilateral).


Cuadro 5
Análisis factorial de los indicadores de capacidad regional de innovación

Fuente: elaboración propia.

Estos resultados reducen los 17 indicadores originales a 8 variables o factores

  • Capacidad de creación del conocimiento 1; se conforma con los indicadores de investigadores SNI, centros de investigación y publicaciones científicas;

  • Capacidad de creación del conocimiento 2; consiste únicamente del indicador presupuesto local en CTI;

  • Capacidad de absorción 1; se integra con los indicadores población con posgrado, becas Conacyt y posgrados de calidad;

  • Capacidad de absorción 2; integrado sólo por gasto público per cápita en educación;

  • Capacidad de difusión del conocimiento 1; factor compuesto por los indicadores: viviendas con computadora, viviendas con teléfono fijo y teléfonos móviles:

  • Capacidad de difusión del conocimiento 2; compuesto por los indicadores: acceso a internet y empresas con ISO 9000;

  • Capacidad de demanda tecnológica 1; integrado por PIB per cápita, nivel de escolaridad y población ocupada ≥14 años;

  • Capacidad de demanda tecnológica 2; contempla únicamente la densidad de población.

Con estos nuevos factores o componentes se procede en el siguiente apartado a llevar a cabo el análisis de regresión con el fin de estimar el coeficiente de determinación de cada uno de estos factores sobre el nivel de producción de innovaciones (Patents) en las entidades federativas.

4.3 Análisis de regresión

Con los resultados obtenidos del análisis factorial se llevó a cabo un análisis de regresión múltiple, con el fin de identificar los factores predictivos de la productividad de patentes en las entidades federativas de México. Este modelo es de naturaleza predictiva/ explicativa y, como se ha señalado, se obtiene mediante el método de regresión por pasos sucesivos.2

Los criterios de inclusión y salida de factores en este procedimiento son los siguientes:

  1. a) De inclusión, la probabilidad de F es <= 0.050;

  2. b) De salida, la probabilidad de F es >= 0.100.

El cuadro 6 exhibe los resultados con respecto a los modelos de regresión obtenidos y sus coeficientes. Se han obtenido 4 modelos con diferencias notables en cuanto a los factores predictivos incorporados. De acuerdo con los criterios establecidos, el modelo 1 incluye sólo uno de los 8 factores analizados, quedando excluidas las otras 7. El paso 2 permitió obtener el modelo 2 de regresión, en él se incluyen 2 y se excluyen 6 factores predictivos. En el paso 3, en cambio, el modelo incluye 3 factores y excluye 6; finalmente, el modelo 4 incluye 2 factores y excluye 6.

La bondad de ajuste de los datos al modelo de regresión lineal múltiple (R, R2, R2 ajustada y error estándar), cuyos resultados son presentados en el cuadro 7, fue el criterio para seleccionar el modelo definitivo. De esta forma, el modelo que mejor cumple con los criterios de bondad de ajuste es el modelo 3.

Cuadro 6
Modelos de regresión de la productividad de innovaciones en los estados mexicanos: coeficientes de regresión (b)a

Fuente: elaboración propia. Nota: a Variable dependiente: patentes solicitadas por millón de habitantes; Método: regresión por pasos sucesivos.

Cuadro 7
Coeficiente de determinación de los modelos de regresión por pasos

Fuente: elaboración propia.

El modelo 3 es el más adecuado para el procesamiento seguido para la selección de variables que mejor predicen el comportamiento de la productividad de patentes en los estados mexicanos, mediante un modelo de regresión lineal múltiple. De acuerdo con este modelo, los factores o variables para predecir la productividad de patentes son: la capacidad de creación del conocimiento 1 (investigadores SNI, centros de investigación y publicaciones científicas); la capacidad de difusión del conocimiento 2 (acceso a internet y empresas con ISO 9000); y, la capacidad de absorción del conocimiento 1 (población con posgrado, becas Conacyt y posgrados de calidad). Sin embargo, el nivel de significancia del predictor Capacidad de Creación del Conocimiento de 0.102 podemos observarlo en la última columna del cuadro 6 e indica insuficiente evidencia para concluir que este predictor está relacionado con la productividad de innovaciones medido por las patentes.

4.4.Análisis de residuales

Para la evaluación del modelo resultante, se procedió a la prueba de normalidad de los residuales de Shapiro Wilk. El gráfico 1 muestra los resultados de esta prueba y exhibe cómo se distribuyen los residuos en relación con la distribución normal. Se obtuvo una W = 0.98654, y un valor p = 0.9518, dado que el valor de p es mayor a 0.05 los datos se distribuyen normalmente.


Gráfico 1
Prueba de normalidad de los residuales. Modelo 3
Fuente: elaboración propia.


Gráfico 2
Distribución de residuales
Fuente: elaboración propia.

4.5 Discusión de los resultados

El método de selección de variables stepwise o por pasos ha permitido evaluar la relación entre las variables que conforman la capacidad de innovación y las patentes solicitadas por entidad federativa. El procedimiento seguido garantiza la inexistencia de un problema de multicolinealidad, pues el método por pasos excluye de manera automática las variables con un alto nivel de correlación. El modelo revela que la capacidad de creación de conocimiento 1, la capacidad de difusión 2 y la capacidad de absorción 1, son los predictores significativos de la tasa de patentamiento en las entidades. El factor con el mayor nivel de poder explicativo es el componente de capacidad de absorción 1 (β= 0.563), seguida por la capacidad de difusión 2 (β= 0.408) y el componente de creación de conocimiento (β= 0.279).

La capacidad de absorción del conocimiento fundamentada en la población con posgrado, la existencia de posgrado de calidad y el número de becarios de posgrado, es el predictor más sólido de la productividad de patentes en los estados mexicanos: el capital humano representado por la población con altos niveles de educación predice la tasa de innovatividad de las entidades. El segundo factor predictivo es la capacidad de difusión 2, medido por la tasa de acceso a internet y la tasa de empresas ISO 9000. La primera variable muestra el efecto de las nuevas tecnologías de la comunicación como herramienta para actividades relacionadas a la CTI, ya que permite a los científicos y tecnólogos estar en contacto y trabajar con diferentes personas en diversas partes del mundo, lo cual incrementa su productividad y permite la generación de nuevos conocimientos y tecnologías (Ruiz Durán, 2008). A su vez las empresas ISO 9000 demuestra la importancia de los sistemas de control de calidad para las organizaciones. La variable “empresas ISO 9000” permite conocer la difusión de las nuevas herramientas de gestión empresarial y las nuevas tecnologías de la producción en la economía regional.

El tercer predictor de la tasa de productividad de patentes en las entidades es el factor “capacidad de creación de conocimiento 1”. El modelo muestra que, a mayor número de investigadores SNI, es mayor la solicitud de patentes: los investigadores del Sistema Nacional de Investigadores son parte clave de la innovación. Esto se debe al reconocimiento de los investigadores de alto nivel, la membresía al SNI simboliza calidad e impacto de las contribuciones científicas realizadas por el investigador (Carayol, 2004). El número de investigadores nacionales es aún reducido, ya que apenas se cuenta con alrededor de 20, 000 investigadores, pero, si se suman investigadores en instituciones de educación superior no reconocidos por el sistema y aquellas en empresas públicas y privadas, podrían ser alrededor de 48,000. México se encuentra en desventaja con algunos de sus principales competidores, como Corea con 199,990; China con 1, 222,756; Taiwán con 95,176; y, Estados Unidos con 133, 397 (Ruiz Durán, 2008). La base de investigadores se ha concentrado en el Distrito Federal, pero poco a poco el número de investigadores en las demás entidades federativas se ha elevado. Indudablemente, la calidad y capacidad de los investigadores favorece la generación de nuevas ideas y, por consiguiente, debería repercutir en el número de patentes de una región.

La capacidad de demanda tecnológica resultó no significativa como predictor de la producción de patentes en los estados, resultado que coincide con Buesa et al. (2010), para quienes las variables de capacidad de demanda no son determinantes en el desempeño innovativo de las regiones europeas. Sin embargo, en el estudio de Radosevic (2004), la capacidad de demanda contribuye significativamente con un coeficiente de 0.631, por ello la capacidad de una economía para generar demanda de innovación depende de qué tan bien desarrollado es su sistema financiero, el grado de competencia y el grado de estabilidad macroeconómica que tiene cada entidad federativa.

Los resultados en cuanto al apoyo (presupuesto) local para las actividades de CTI son contrastantes con los de otros estudios en esta misma línea de investigación, como el desarrollado para el caso de China por Li (2009), quien encuentra el apoyo del gobierno local relacionado positivamente con la generación y la productividad de las innovaciones regionales. Ese autor incorpora la proporción de los ingresos financieros regionales gastados en actividades locales de Ciencia y Tecnología (%), una medida del apoyo gubernamental local a las actividades de innovación, como un indicador de la eficiencia de las actividades de innovación locales.

Conclusiones

En esta investigación se tuvo como objetivo identificar los factores que pueden explicar o predecir la productividad de las entidades federativas en la generación de innovaciones, medidas por las patentes. La primera conclusión desprendida de este trabajo es que, mediante este análisis empírico, se ha podido comprobar que el marco conceptual de capacidades de innovación tiene un “poder explicativo” importante para conocer cuáles son las fuerzas o factores detrás del desempeño desigual en las entidades federativas de México en cuanto a la producción de innovaciones.

Los resultados para el caso de México sugieren que los principales predictores de la productividad de los estados en la generación de patentes son la capacidad de absorción, la capacidad de difusión y la capacidad de creación de conocimiento de las entidades. También, los presupuestos locales destinados a las actividades de CTI tienen una influencia significativa. Respecto a la capacidad de absorción, la población con estudios de posgrado, la presencia de posgrado de calidad y la participación en las becas vigentes Conacyt son factores predictivos del desempeño en innovación de las entidades federativas. Esta capacidad es esencial para la “puesta al día” o actualización tecnológica de las economías regionales. Por tanto, la educación de posgrado en las entidades genera el capital humano y los nuevos conocimientos, además de facilitar y estimular la incorporación del conocimiento generado en el exterior de la región.

El segundo factor denominado capacidad de difusión del cono- cimiento fue medido por indicadores como el acceso a internet y las empresas ISO 9000 y constituye, de acuerdo con los resultados, un importante predictor de los registros efectivos de patentes en los estados mexicanos.

Resulta muy interesante que las diferencias en cuanto a presupuesto local asignado a la CTI y el gasto público educativo per cápita no sean factores determinantes en las diferencias significativas en el desempeño de los estados como generadores de patentes. Ello se debe a que éste se ha orientado en los últimos años a cumplir con objetivos de política ligados a resarcir las desigualdades en términos de desarrollo que se prestan entre las entidades del país: es decir, un mayor gasto se ha orientado a las entidades más atrasadas con el fin de sentar las bases de un desarrollo más equitativo (convergente) en términos territoriales y sociales. La capacidad de creación de conocimiento, concretada en las capacidades de I+D, juega un papel importante como factor, sin embargo, tiene un menor peso. No obstante, de acuerdo con los resultados es necesario continuar con las políticas públicas que refuercen estas capacidades, en especial en lo referente a los activos de infraestructura científica (centros de investigación), capital humano con competencias en las actividades de I+D (investigadores miembros del SNI), y un elevando el stock de conocimiento (publicaciones científicas locales).

Esta investigación puede ser una referencia muy particular para que futuras investigaciones puedan abordar y proponer nuevos marcos conceptuales para el estudio de las desigualdades regionales en la generación de innovaciones. Una de las limitaciones de este trabajo de investigación fue la poca disponibilidad y la dificultad en la recopilación de datos para los indicadores de CTI de las entidades federativas de México, pues varios indicadores sobre capacidades de innovación no se pudieron aplicar, debido a la disponibilidad prácticamente nula de información estadística sobre recursos y capacidades para la ciencia y la tecnología sobre este rubro. Esto tiene como resultado un rezago en la investigación, al no poder abordarse diferentes temáticas y metodologías aplicadas actualmente en el análisis del potencial innovativo de los países y regiones; por ello, en México este tipo de análisis se ha enfocado o limitado a la elaboración de rankings para las entidades federativas.

Material suplementario
Bibliografía
Abramovitz, Moses (1986), “Catching-up, forging ahead and falling behind”, Journal of Economic History, 46 (2), pp. 385-406.
Abramovitz, Moses y Paul A. David (1996), “Convergence and deferred catchup: productivity leadership and the waning of American exceptionalism”, en The mosaic of economic growth, Stanford University Press, Stanford, pp. 21-62.
Acs, J. Zoltan y David Audretsch (1989), “Patents as a measure of innovative activity”, Kyklos, 42 (2), pp. 171-180.
Aregional (2010), Índice de Innovación Estatal (I2E) 2010, Serie: Innovación Regional X (31).
Buesa, Mikel, Joost Heijs y Thomas Baumert (2010), “The determinants of regional innovation in Europe: A combined factorial and regression knowledge production function approach”, Research Policy, 39 (6), pp. 722-733.
Buesa, Mikel, Mónica Martínez, Joost Heijs y Thomas Baumert (2002), “Los sistemas regionales de innovación en España”, Economía Industrial, 347, pp. 15-32.
Carayol, Nicolas (2004), “Academic Incentives and Research Organization for Patenting at a Large French University”, trabajo presentado en el Tercer Taller EPIP, Pisa.
Castelllaci, Fulvio y José Miguel Natera (2012), “The dynamics of national innovation systems: A panel cointegration analysis of the coevolution between innovative capability and absorptive capability”, Elsevier, 42 (3), pp. 580-594.
Chandra, Vandana, Deniz Eröcal, Pier Carlo Padoan y Carlos A. Primo Braga (2012), Innovación y crecimiento. En busca de una frontera en movimiento, OCDE, Banco Mundial y Foro Consultivo Científico y Tecnológico, México.
CIEP (Centro de Investigación Económica y Presupuestaria) (2010), Distribución y efectos del gasto público en la educación en México.
Cohen, Wesley M. y Daniel Levinthal (1990), “Absorptive capacity: A new perspective on learning and innovation”, Administration Science Quarter, pp. 128-152.
CEC (Commission of the European Communities) (2001), Trendchart Innovation Scoreboard 2001, CEC, Luxembourg.
CEC (Commission of the European Communities) (2002), “European Innovation Scoreboard 2002”, Cordis Focus, 19, December, CEC, Luxembourg.
Conacyt (Consejo Nacional de Ciencia y Tecnología) (2011), Informe General del Estado de la Ciencia y la Tecnología.
Coronado Guerrero, Daniel y Manuel Acosta Seró (1994), “La localización espacial de innovaciones tecnológicas. Factores determinantes y consecuencias sobre el desarrollo regional”, Estudios Regionales, 38, pp. 159-174.
Edquist, Charles (1997), Systems of Innovation: Technologies, Institutions and Organizations, London Pinter.
FCCyT (Foro Consultivo Científico y Tecnológico) (2010), Diagnósticos en Ciencia, Tecnología e Innovación, FCCyT, México.
FCCyT (Foro Consultivo Científico y Tecnológico) (2012), Diagnósticos en Ciencia, Tecnología e Innovación, FCCyT, México.
FCCyT (Foro Consultivo Científico y Tecnológico) (2014), Ranking Nacional de Ciencia y Tecnología en México 2013, FCCyT, México.
Feldman, Maryann. P. y David B. Audretsch (1999), “Innovation in cities: Science-based diversity, specialization and localized competition”, European economic review, 43 (2), pp. 409-429.
Fritsch, Michael (2002), “Measuring the quality of regional innovation systems: a knowledge production function approach”, International Regional Science Review, 25 (1), pp. 86-101.
Furman, Jeffrey, Michael Porter y Scott Stern (2002), The determinants of national innovative capacity, Elsevier, pp. 899-933.
García Quevedo, José (2002), “Universidades e infraestructura tecnológica en la localización de las innovaciones”, Economía Industrial, IV (346), pp. 127-134.
Germán Soto, Vicente; Luis Gutiérrez Flores y Sandra Haydeé Tovar Montiel (2009), “Factores y relevancia geográfica del proceso de innovación regional en México, 1994-2006”, Estudios Económicos, pp. 225-248.
German Soto, Vicente y Luis Gutiérrez Flores (2015), “A Standardized Coefficients Model to Analyze the Regional Patents Activity: Evidence from the Mexican States”, Journal of the Knowledge Economy, 6 (1), pp. 72-89.
Griliches, Zvi (1990), “Patent statistics as economic indicators: a survey” (No. w3301), R&D and Productivity: The Econometric Evidence, National Bureau of Economic Research.
Hall, Bronwyn, Adam B. Jaffe y Manuel Trajtenberg (2001), The NBER patent citation data file: Lessons, insights and methodological tools (No. w8498), National Bureau of Economic Research.
IMCO (Instituto Mexicano de la Competitividad) (2010), Índice de Competitividad Estatal 2010, La Caja Negra del Gasto Público, México.
IMCO (Instituto Mexicano de la Competitividad) (2010), Índice de Competitividad Estatal 2010. ¿Dónde quedó la bolita?, México.
INEGI (Instituto Nacional de Estadística y Geografía) (2010), Censo General de Población y Vivienda, INEGI, México.
Lall, Sanjaya (1992), “Technological capabilities and industrialization”, World Development, 20 (2), pp. 165-186.
Lan, Ju, Guoyue Xiong y Huan Li (2009), “Knowledge Diffusion Capability Generation for Under-Developed Regions’ Economic Development”, Management and Service Science -MASS’09. International Conference, IEEE.
Li, Xibao (2009), “China’s regional innovation capacity in transition: An empirical approach”, Research Policy, pp. 338-357.
Lundvall, Bengt-Åke (1992), National Systems of Innovation. Towards a Theory of Innovation and Interactive Learning, London Pinter.
Miles, Nicolas, Charu Wilkinson, Jakob Edler, Mercedes Bleada, Paul Simmonds y John Clark (2009), The wider conditions for innovation in the UK, NESTA, London.
Muller, Emmanuel, Arlette Jappe, Jean Alain Héraud y Andrea Zenker (2006), “A regional typology of innovation capacities in new member states and candidate countries”, Bureau d’économie théorique et appliquée .BETA).
Nelson, Richard y Sydney G. Winter (1977), “In search of a useful theory of innovation”, Innovation, Economic change and Technology Policies, 6 (1), pp. 215-245.
OCDE (Organización para la Cooperación y el Desarrollo Económicos) (2009), Manual de estadísticas de patentes de la OCDE, Organización para la Cooperación y el Desarrollo Económicos, Paris.
Pavitt, Keith (1985), “Patent statistics as indicators of innovative activities: possibilities and problems”, Scientometrics, 7 (1), pp. 77-99.
Piergiovanni, Roberta y Enrico Santarelli (2001), “Patents and the geographic localization of R&D spillovers in French manufacturing”, Regional Studies, 35 (8), pp. 697-702.
Radosevic, Slavo (2004), “A Two-tier or Multi-tier Europe? Assesing the Innovation Capacities of Central and East European Countries in the Enlaged EU. JCMS”, Journal of Common Market Studies, pp. 641-666.
Riddel, Mary y Keith Schwer (2003), “Regional innovative capacity with endogenous employment: empirical evidence from the US”, The Review of Regional Studies, 33 (1), pp. 73-84.
Ruiz Durán, Clemente (2008), “México: geografía económica de la innovación”, Comercio Exterior, 58 (11), pp. 756-768.
Sánchez Tovar, Yesenia, Francisco García Fernández y Esteban Mendoza Flores (2014), “Determinantes de la capacidad de innovación regional en México: una tipología de las regiones”, Región y sociedad, 26 (61), pp. 118-158.
Valdez-Lafarga, Cuitláhuac y Jorge Inés León Balderrama (2015), “Hacia una taxonomía de los sistemas regionales de innovación en México”, Economía, Sociedad y Territorio, 15 (48), pp. 517-553.
Verspagen, Bart (2007), “Mapping technological trajectories as patent citation networks: A study on the history of fuel cell research”, Advances in Complex Systems, 10 (01), pp. 93-115.
Zahra, Shaker A. y Gerard George (2002), “Absorptive capacity: a review, reconceptualization and extension”, Academy of Management Review, pp. 185-203.
Notas
Notas
1. Con el fin de tener una referencia internacional, estas cifras contrastan enormemente y están muy alejadas de las alcanzadas en ese mismo año por algunas entidades de los Estados Unidos: California (27,336); Massachusetts (4,923), Illinois (3,611) y Florida (2,977), por ejemplo (U.S. Patent and Trademark Office, decembrer 2015).
2. En el análisis de regresión lineal múltiple, la construcción del modelo se realiza seleccionando las variables una a una, “paso a paso”. La finalidad es buscar de entre todas las posibles variables explicativas aquellas que más y mejor expliquen a la variable dependiente, sin ser ninguna de ellas combinación lineal de las restantes. Este procedimiento implica: (1) en cada paso solo se introduce aquella variable que cumple unos criterios de entrada; (2) una vez introducida, en cada paso se valora si alguna de las variables cumplen criterios de salida; y (3), en cada paso se valora la bondad de ajuste de los datos al modelo de regresión lineal y se calculan los parámetros del modelo verificado en dicho paso. El proceso se inicia sin ninguna variable independiente en la ecuación de regresión y el proceso concluye cuando no queda ninguna variable fuera de la ecuación que satisfaga el criterio de selección (garantiza que las variables seleccionadas son significativas) y/o el criterio de eliminación (garantizar que una variable seleccionada no es redundante).
Notas de autor
a Investigador del Centro de Investigación en Alimentación y Desarrollo, A. C. (CIAD), Sonora, México.
b Estudiante egresada de la Maestría en Desarrollo Regional, Centro de Investigación en Alimentación y Desarrollo, A. C. (CIAD), Sonora, México.
c Investigador del Centro de Investigación en Alimentación y Desarrollo, A. C. (CIAD), Sonora, México.
Cuadro 1
Selección de estudios previos sobre los determinantes de la generación de innovaciones en las regiones/estados

Cuadro 1 (cont. 1)
Selección de estudios previos sobre los determinantes de la generación de innovaciones en las regiones/estados

Cuadro 1 (cont. 2)
Selección de estudios previos sobre los determinantes de la generación de innovaciones en las regiones/estados


Figura 1
Dimensiones de la capacidad nacional de innovación propuestas por Radosevic
Fuente: Radosevic (2004).

Figura 2
La co-evolución de las capacidades de innovación y absorción (CIA)
Fuente: Castellaci y Natera (2012).

Figura 3
El enfoque de la capacidad nacional de innovación (CNI) de Muller
Fuente: Muller et al. (2006).

Figura 4
Capacidad Regional de Innovación
Fuente: elaboración propia con base en Muller (2006).
Cuadro 2
Definición de los indicadores por dimensión de la capacidad regional de innovación

Cuadro 3
Estadísticas descriptivas de las capacidades de innovación de las entidades federativas

Fuente: elaboración propia.
Cuadro 4
Correlación entre los indicadores seleccionados

Fuente: elaboración propia. Notas: * La correlación es significante al nivel 0,05 (bilateral).

** La correlación es significativa al nivel 0,01 (bilateral).


Cuadro 5
Análisis factorial de los indicadores de capacidad regional de innovación

Fuente: elaboración propia.
Cuadro 6
Modelos de regresión de la productividad de innovaciones en los estados mexicanos: coeficientes de regresión (b)a

Fuente: elaboración propia. Nota: a Variable dependiente: patentes solicitadas por millón de habitantes; Método: regresión por pasos sucesivos.
Cuadro 7
Coeficiente de determinación de los modelos de regresión por pasos

Fuente: elaboración propia.

Gráfico 1
Prueba de normalidad de los residuales. Modelo 3
Fuente: elaboración propia.

Gráfico 2
Distribución de residuales
Fuente: elaboración propia.
Buscar:
Contexto
Descargar
Todas
Imágenes
Visor de artículos científicos generados a partir de XML-JATS4R por Redalyc