Referencias
1. Aboutaleb N., Jamali H., Abolhasani M., & Pazoki Toroudi H. (2019). Lavender oil (Lavandula angustifolia) attenuates renal ischemia/reperfusion injury in rats through suppression of inflammation, oxidative stress and apoptosis. Biomedicine & pharmacotherapy=Biomedecine & pharmacotherapie, 110,9–19. https://doi.org/10.1016/j.biopha.2018.11.045.
2. Akıncı A., Eşrefoğlu M., Taşlıdere E., & Ateş B. (2017). Petroselinum Crispum is Effective in Reducing Stress-Induced Gastric Oxidative Damage. Balkan medical journal, 34(1),53–59. https://doi.org/10.4274/balkanmedj.2015.1411.
3. Anwar F, Abbas A, Mehmood T, Gilani AH, Rehman NU. (2019). Mentha: A genus rich in vital nutra-pharmaceuticals-A review. Phytother Res. 33(10):2548-2570. doi:10.1002/ptr.6423.
4. Apel M. A., Sardá Ribeiro V. L., Bordignon S. A. L., Henriques A. T., & von Poser G. (2009). Chemical composition and toxicity of the essential oils from Cunila species (Lamiaceae) on the cattle tick Rhipicephalus (Boophilus) microplus. Parasitology Research, 105(3), 863–868. doi:10.1007/s00436-009-1455-4.
5. Arefani S., Mehran S., Moladoust H., Norasfard M. R., Ghorbani A., & Abedinzade M. (2018). Effects of standardized extracts of Lamium album and Urtica dioica on rat tracheal smooth muscle contraction. Journal of pharmacopuncture, 21(2), 70–75. https://doi.org/10.3831/KPI.2018.21.008.
6. Ascrizzi R., Fraternale D., & Flamini G. (2018). Photochemical response of parsley (Petroselinum crispum (Mill.) Fuss) grown under red light: The effect on the essential oil composition and yield. Journal of Photochemistry and Photobiology B: Biology, 185, 185–191. doi:10.1016/j.jphotobiol.2018.06.006.
7. Baliga M. S., Jimmy R., Thilakchand K. R., Sunitha V., Bhat N. R., Saldanha E., Palatty P. L. (2013). Ocimum SanctumL (Holy Basil or Tulsi) and Its Phytochemicals in the Prevention and Treatment of Cancer. Nutrition and Cancer, 65(sup1), 26–35. doi:10.1080/01635581.2013.785010.
8. Barbosa, P. P. P., & Ramos, C. P. (1992). Studies on the antiulcerogenic activity of the essential oil of Hyptis mutabilis Briq. In rats. Phytotherapy Research, 6(2), 114-115.
9. Ben-Arye E Dudai N, Eini A Torem M, Schiff E, Rakover Y. (2011). Treatment of upper respiratory tract infections in primary care: a randomized study using aromatic herbs. Evid Based Complement Alternat Med. doi:10.1155/2011/690346
10. Beretta H. V., Bannoud F., Insani M., Berli F., Hirschegger P., Galmarini C. R., & Cavagnaro, P. F. (2017). Relationships Between Bioactive Compound Content and
the Antiplatelet and Antioxidant Activities of Six Allium Vegetable Species. Food technology and biotechnology, 55(2),266–275. https://doi.org/10.17113/ftb.55.02.17.4722
11. Beyzi E., Beyzi S.B., & Karaman K. (2019). Sterol Profile of Some Medicinal and Aromatic Plant Oils: Effect of Silyl Derivatization Process.
13. Bower A., Marquez S., & de Mejia E. G. (2015). The Health Benefits of Selected Culinary Herbs and Spices Found in the Traditional Mediterranean Diet. Critical Reviews in Food Science and Nutrition, 56(16),2728–2746. doi:10.1080/10408398.2013.805713.
14. Brimson J. M., Onlamoon N., Tencomnao T., & Thitilertdecha P. (2019). Clerodendrum petasites S. Moore: The therapeutic potential of phytochemicals, hispidulin, vanillic acid, verbascoside, and apigenin. Biomedicine & Pharmacotherapy, 118, 109319. doi:10.1016/j.biopha.2019.109319
15. Caleja C, Finimundy TC, Pereira C, et al. (2019) Challenges of traditional herbal teas: plant infusions and their mixtures with bioactive properties. Food Funct. 10(9):5939-5951. doi:10.1039/c9fo01473j.
16. Cecilia Barría, (2020) Coronavirus: los 10 países que más han gastado en enfrentar la pandemia (y cómo se ubican los de América Latina) BBC New Mundo [consultado 12 Ago 2020]. Disponible en: https://www.bbc.com/mundo/noticias-52686453.
17. Chonpathompikunlert P., Boonruamkaew P., Sukketsiri W., Hutamekalin P., & Sroyraya M. (2018). The antioxidant and neurochemical activity of Apium graveolens L. and its ameliorative effect on MPTP-induced Parkinson-like symptoms in mice. BMC Complementary and Alternative Medicine, 18(1). doi:10.1186/s12906-018-2166-0.
18. Chu C. J., & Kemper K. J. (2001). Lavender (Lavandula spp.). Longwood Herbal Task Force, 32.
19. Contreras M. del M., Algieri F., Rodriguez-Nogales A., Gálvez J., & Segura-Carretero, A. (2017). Phytochemical profiling of anti-inflammatory Lavandula extracts via RP-HPLC-DAD-QTOF-MS and -MS/MS: Assessment of their qualitative and quantitative differences. ELECTROPHORESIS, 39(9-10),1284–1293. doi:10.1002/elps.201700393.
20. Czerwińska M. E., Świerczewska A., & Granica S. (2018). Bioactive Constituents of Lamium album L. as Inhibitors of Cytokine Secretion in Human Neutrophils. Molecules (Basel, Switzerland), 23(11),2770. https://doi.org/10.3390/molecules23112770.
21. Czerwińska M. E., Świerczewska A., Woźniak M., & Kiss A. K. (2017). Bioassay-Guided Isolation of Iridoids and Phenylpropanoids from Aerial Parts of Lamium album and Their Anti-inflammatory Activity in Human Neutrophils. Planta medica, 83(12-13), 1011–1019. https://doi.org/10.1055/s-0043-107031.
22. Das S., Sarmah S., Lyndem S., & Singha Roy, A. (2020). An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. Journal of biomolecular structure & dynamics, 1–11. Advance online publication. https://doi.org/10.1080/07391102.2020.1763201.
23. Das S., Singh V. K., Dwivedy A. K., Chaudhari A. K., Upadhyay N., Singh A., … Dubey. (2019). Antimicrobial activity, antiaflatoxigenic potential and in situ efficacy of novel formulation comprising of Apium graveolens essential oil and its major component. Pesticide Biochemistry and Physiology. doi:10.1016/j.pestbp.2019.07.013.
24. De la Cruz-Jimenez L, Guzman-Lucio M, Viveros-Valdez E. (2014). Traditional Medicinal Plants Used for the Treatment of Gastrointestinal Diseases in Chiapas, México. World Applied Sciences Journal. 31 (4): 508-515.
25. Denner S. S. (2009). Lavandula angustifolia miller: english lavender. Holistic Nursing Practice, 23(1), 57-64.
28. Ekow Thomford N., Dzobo K., Adu F., Chirikure S., Wonkam A., & Dandara C. (2018). Bush mint (Hyptis suaveolens) and spreading hogweed (Boerhavia diffusa) medicinal plant extracts differentially affect activities of CYP1A2, CYP2D6 and CYP3A4 enzymes. Journal of ethnopharmacology, 211, 58–69. https://doi.org/10.1016/j.jep.2017.09.023.
29. El-Rehem, F. A. E.-R. A. A., & Ali, R. F. M. (2013). Proximate compositions, phytochemical constituents, antioxidant activities and phenolic contents of seed and leaves extracts of Egyptian leek (Allium ampeloprasum var. kurrat). European Journal of Chemistry, 4(3), 185–190. doi:10.5155/eurjchem.4.3.185-190.711.
30. Elizabeth Sánchez Trávez (2015) Estudio del ajo de monte (Mansoa Aliácea) y sus propiedades: su uso gastronómico y medicinal en la comuna Chiguilpe de Santo Domingo de los Tsáchilas. 11.
31. Farzaei M. H., Abbasabadi Z., Ardekani M. R. S., Rahimi R., & Farzaei F. (2013). Parsley: a review of ethnopharmacology, phytochemistry and biological activities. Journal of Traditional Chinese Medicine, 33(6),815–826. doi:10.1016/s0254-6272(14)60018-2.
32. Fattorusso E, Iorizzi M, Lanzotti V, Taglialatela-Scafati O. (2020). Chemical composition of shallot (Allium ascalonicum Hort.). J Agric Food Chem. 50(20):5686-5690. doi:10.1021/jf020396t.
33. Figueroa M., Rivero-Cruz I., Rivero-Cruz B., Bye R., Navarrete, A., & Mata, R. (2007). Constituents, biological activities and quality control parameters of the crude extract and essential oil from Arracacia tolucensis var. multifida. Journal of Ethnopharmacology, 113(1), 125–131. doi:10.1016/j.jep.2007.05.015.
34. Fretes F., & Mendoza C. (2010). Plantas medicinales y aromáticas: una alternativa de producción comercial. Paraguay: Agencia del Gobierno de los Estados Unidos para el Desarrollo Internacional (USAID).
35. Gandhi SG, Mahajan V, Bedi YS. (2015). Changing trends in biotechnology of secondary metabolism in medicinal and aromatic plants. Planta. 241(2):303-317. doi:10.1007/s00425-014-2232-x.
36. García-Galicia M. C., Burgueño-Tapia E., Romero-Rojas A., García-Zebadúa J. C., Cornejo-Garrido J., & Ordaz-Pichardo C. (2014). Anti-hyperglycemic effect, inhibition of inflammatory cytokines expression, and histopathology profile in streptozotocin-induced diabetic rats treated with Arracacia tolucensis aerial-parts extracts. Journal of Ethnopharmacology, 152(1),91–98. doi:10.1016/j.jep.2013.12.031.
37. Garcia M. D., Saenz M. T., Gomez M. A., & Fernandez, M. A. (1999). Topical antiinflammatory activity of phytosterols isolated from Eryngium foetidum on chronic and acute inflammation models. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 13(1), 78-80.
38. Gilling DH, Kitajima M, Torrey JR, Bright KR. (2014). Antiviral efficacy and mechanisms of action of oregano essential oil and its primary component carvacrol against murine norovirus. J Appl Microbiol. 116(5):1149-1163. doi:10.1111/jam.12453.
39. González-Ramírez A., González-Trujano M. E., Pellicer F., & López-Muñoz Francisco, J. (2012). Anti-nociceptive and anti-inflammatory activities of the Agastache mexicana extracts by using several experimental models in rodents. Journal of ethnopharmacology, 142(3),700–705. https://doi.org/10.1016/j.jep.2012.05.044.
40. Griffiths G, Trueman L, Crowther T, Thomas B, Smith B. (2002). Onions--a global benefit to health. Phytother Res. 16(7):603-615. doi:10.1002/ptr.1222.
41. Hajhashemi V., Ghannadi A., & Sharif B. (2003). Anti-inflammatory and analgesic properties of the leaf extracts and essential oil of Lavandula angustifolia Mill. Journal of ethnopharmacology, 89(1), 67-71.
42. Hedayati N., Bemani Naeini M., Mohammadinejad A., & Mohajeri S. A. (2019). Beneficial effects of celery (Apium graveolens) on metabolic syndrome: A review of the existing evidences. Phytotherapy Research. doi:10.1002/ptr.6492.
43. Heidi Rubí Ramírez-Concepcióna, Liliana Narcedalia Castro-Velascoa, Erika Martínez-Santiagoa (2016) Efecto Terapéutico del Ajo (Allium sativum). 40-45.
44. Hernández-Abreu O., Castillo-España P., León-Rivera I., Ibarra-Barajas M., Villalobos-Molina R., González-Christen J., ... & Estrada-Soto S. (2009). Antihypertensive and vasorelaxant effects of tilianin isolated from Agastache mexicana are mediated by NO/cGMP pathway and potassium channel opening. Biochemical Pharmacology, 78(1), 54-61.
45. Insawang S., Pripdeevech P., Pripdeevech C., Pripdeevech S., Pripdeevech S., Nakham, T., Panuwet, P. (2019). Essential Oil Compositions and Antibacterial and Antioxidant Activities of Five Lavandula stoechas Cultivars Grown in Thailand. Chemistry & Biodiversity. doi:10.1002/cbdv.201900371.
46. Isaac I Bogoch, Alexander Watts, Andrea Thomas-Bachli, Carmen Huber, Moritz U G Kraemer, Kamran Khan, (2020) Pneumonia of unknown aetiology in Wuhan, China: potential for international spread via commercial air travel. Oxford ACADEMIC. doi.org/10.1093/jtm/taaa008.
48. J.R. Vallejo Villalobos, D. Peral Pacheco, M.C. Carrasco Ramos (2008), Las especies del género Allium con interés medicinal en Extremadura. Medicin Naturista, Vol. 2 – N.° 1 2:6.
50. Kapchina-Toteva V., Dimitrova M. A., Stefanova M., Koleva D., Kostov K., Yordanova Z. P., … Zhiponova M. K. (2014). Adaptive changes in photosynthetic performance and secondary metabolites during white dead nettle micropropagation. Journal of Plant Physiology, 171(15), 1344–1353. doi:10.1016/j.jplph.2014.05.010.
51. Khaerunnisa S., Kurniawan H., Awaluddin R., Suhartati S., & Soetjipto S. (2020). Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study. Prepr. doi:10, 20944, 1-14.
52. Kim MG, Kim SM, Min JH, et al. (2019). Anti-inflammatory effects of linalool on ovalbumin-induced pulmonary inflammation. Int Immunopharmacol. 74:105706. doi:10.1016/j.intimp.2019.105706.
53. Kooti W., & Daraei N. (2017). A Review of the Antioxidant Activity of Celery (Apium graveolens L). Journal of Evidence-Based Complementary & Alternative Medicine, 22(4), 1029–1034. doi:10.1177/2156587217717415.
54. Kuhnt M., Pröbstle A., Rimpler H., Bauer R., & Heinrich M. (1995). Biological and pharmacological activities and further constituents of Hyptis verticillata. Planta medica, 61(03), 227-232.
55. Kumar V, Dhanjal JK, Kaul SC, Wadhwa R, Sundar D. Withanone and caffeic acid phenethyl ester are predicted to interact with main protease (Mpro) of SARS-CoV-2 and inhibit its activity [published online ahead of print, 2020 Jun 1]. J Biomol Struct Dyn. 2020;1-13. doi:10.1080/07391102.2020.1772108.
56. Lane T, Anantpadma M, Freundlich JS, Davey RA, Madrid PB, Ekins S. (2019). The Natural Product Eugenol Is an Inhibitor of the Ebola Virus in Vitro. Pharm Res. 36(7):104. Published 2019 May 17. doi:10.1007/s11095-019-2629-0.
57. Lanzotti V. (2006). The analysis of onion and garlic. J Chromatogr A. 1112(1-2):3-22. doi:10.1016/j.chroma.2005.12.016.
58. Linde G. A., Gazim Z. C., Cardoso B. K., Jorge L. F., Tešević V., Glamoćlija J., … Colauto, N. B. (2016). Antifungal and antibacterial activities of Petroselinum crispum essential oil. Genetics and Molecular Research, 15(3). doi:10.4238/gmr.15038538.
59. Liu G., Zhuang L., Song, D., Lu, C., & Xu, X. (2016). Isolation, purification, and identification of the main phenolic compounds from leaves of celery (Apium graveolensL.var. dulceMill./Pers.). Journal of Separation Science, 40(2), 472–479. doi:10.1002/jssc.201600995.
60. Lopes C., Pereira E., Soković M., Carvalho A., Barata A., Lopes V., … Ferreira, I. (2018). Phenolic Composition and Bioactivity of Lavandula pedunculata (Mill.) Cav. Samples from Different Geographical Origin. Molecules, 23(5), 1037. doi:10.3390/molecules23051037.
61. López V., Nielsen B., Solas M., Ramírez M. J., & Jäger A. K. (2017). Exploring Pharmacological Mechanisms of Lavender (Lavandula angustifolia) Essential Oil on Central Nervous System Targets. Frontiers in pharmacology, 8,280. https://doi.org/10.3389/fphar.2017.00280.
62. Ma J., Huang J., Hua S., Zhang Y., Zhang Y., Li T., Fu X. (2018). The ethnopharmacology, phytochemistry and pharmacology of Angelica biserrata- a review. Journal of Ethnopharmacology. doi: 10.1016/j.jep.2018.10.040.
63. Mariela Pontin, Rubén Bottini, José Luis Burba, Patricia Piccoli (2014) Allium sativum produces terpenes with fungistatic properties in response to infection with Sclerotium cepivorum, 53pp.
64. Marzouk M. M., Hussein S. R., Elkhateeb A., El‐shabrawy M., Abdel‐ Hameed E. S. S., & Kawashty S. A. (2018). Comparative study of Mentha species growing wild in Egypt: LC‐ESI‐MS analysis and chemosystematic significance. Journal of Applied Pharmaceutical Sci- ence, 8(08), 116–122.
65. Medbouhi Benbelaïd, Djabou Beaufay, Bendahou Quetin-Leclercq, Muselli. (2019). Essential Oil of Algerian Eryngium campestre: Chemical Variability and Evaluation of Biological Activities. Molecules, 24(14), 2575. doi:10.3390/molecules24142575.
66. Mnayer D, Fabiano-Tixier AS, Petitcolas E, et al. (2014) Chemical composition, antibacterial and antioxidant activities of six essentials oils from the Alliaceae family. Molecules. 19(12):20034-20053. doi:10.3390/molecules191220034.
67. Najar B., Marchioni I., Ruffoni B., Copetta A., Pistelli L., & Pistelli L. (2019). Volatilomic Analysis of Four Edible Flowers from Agastache Genus. Molecules, 24(24), 4480. doi:10.3390/molecules24244480.
68. Narkhede R. R., Pise A. V., Cheke R. S., & Shinde S. D. (2020). Recognition of Natural Products as Potential Inhibitors of COVID-19 Main Protease (Mpro): In-Silico Evidences. Natural Products and Bioprospecting. doi:10.1007/s13659-020-00253-1.
69. Navarrete A., Ávila-Rosas N., Majín-León M., Balderas-López J. L., Alfaro-Romero A., & Tavares-Carvalho J. C. (2016). Mechanism of action of relaxant effect of Agastache mexicana ssp.mexicana essential oil in guinea-pig trachea smooth muscle. Pharmaceutical Biology, 55(1),96–100. doi:10.1080/13880209.2016.1230140.
70. Ocampo R. A. (2002). Situación actual del comercio de plantas medicinales en América Latina. Boletín latinoamericano y del Caribe de plantas medicinales y aromáticas, 1(4), 35-40.
71. Oliveira J. P. S., Koblitz M. G. B., Ferreira M. S. L., Cameron L. C., & Macedo A. F. (2018). Comparative metabolomic responses to gibberellic acid and 6-benzylaminopurine in Cunila menthoides Benth. (Lamiaceae): a contribution to understand the metabolic pathways. Plant Cell Reports, 37(8),1173–1185. doi:10.1007/s00299-018-2303-8.
72. Pannek J., Gach, J., Boratyński F., & Olejniczak T. (2018). Antimicrobial activity of extracts and phthalides occurring in Apiaceae plants. Phytotherapy Research, 32(8),1459–1487. doi:10.1002/ptr.6098.
73. Paul J. H., Seaforth C. E., & Tikasingh T. (2011). Eryngium foetidum L.: A review. Fitoterapia, 82(3),302-308.
74. Paun G., Neagu E., Moroeanu V., Albu C., Savin S., & Lucian Radu G. (2019). Chemical and Bioactivity Evaluation of Eryngium planum and Cnicus benedictus Polyphenolic-Rich Extracts. BioMed Research International, 2019, 1–10. doi:10.1155/2019/3692605.
75. Pedreschi R., Betalleluz-Pallardel I., Chirinos R., Curotto C., & Campos D. (2011). Impact of cooking and drying on the phenolic, carotenoid contents and in vitro antioxidant capacity of Andean Arracacha (Arracacia xanthorrhiza Bancr.) root. Food Science and Technology International, 17(4),319–330. doi:10.1177/1082013210382449.
76. Pereira O. R., Macias R. I. R., Domingues M. R. M., Marin J. J. G., & Cardoso S. M. (2019). Hepatoprotection of Mentha aquatica L., Lavandula dentata L. and Leonurus cardiaca L. Antioxidants, 8(8), 267. doi:10.3390/antiox8080267.
77. Peterson, L. (2020). COVID-19 and Flavonoids: In Silico Molecular Dynamics Docking to the Active Catalytic Site of SARS-CoV and SARS-CoV-2 Main Protease. Available at SSRN 3599426.
78. Picking D., Delgoda R., Boulogne I., & Mitchell S. (2013). Hyptis verticillata Jacq: A review of its traditional uses, phytochemistry, pharmacology and toxicology. Journal of ethnopharmacology, 147(1), 16-41.
79. Rojas G., Lévaro J., Tortoriello J., & Navarro V. (2001). Antimicrobial evaluation of certain plants used in Mexican traditional medicine for the treatment of respiratory diseases. Journal of Ethnopharmacology, 74(1), 97-101.
80. Ruiz-Vargas J. A., Morales-Ferra D. L., Ramírez-Ávila G., Zamilpa A., Negrete-León E., Acevedo-Fernández J. J., & Peña-Rodríguez L. M. (2019). α-Glucosidase inhibitory activity and in vivo antihyperglycemic effect of secondary metabolites from the leaf infusion of Ocimum campechianum mill. Journal of Ethnopharmacology, 112081. doi:10.1016/j.jep.2019.112081.
81. Sánchez Govín E., Leal López I. M., Fuentes Hernández, L., & Rodríguez Ferrada, C. A. (2000). Estudio farmacognóstico de Ocimum basilicum L. (albahaca blanca). Revista Cubana de Farmacia, 34(3), 187-195.
82. Sarker S., & Nahar L. (2004). Natural Medicine: The Genus Angelica. Current Medicinal Chemistry, 11(11), 1479–1500. doi:10.2174/0929867043365189.
84. Shrivastava N., & Patel T. (2007). Clerodendrum and healthcare: an overview. Medicinal and aromatic plant science and biotechnology, 1(1), 142-150.
85. Shrivastava N., & Patel T.D. (2009). Clerodendrum and Healthcare: An Overview-Part II Phytochemistry and Biotechnology.
86. Silva J. K. R. da, Figueiredo, P. L. B., Byler K. G., & Setzer W. N. (2020). Essential Oils as Antiviral Agents. Potential of Essential Oils to Treat SARS−CoV−2 Infection: An In−Silico Investigation. International Journal of Molecular Sciences, 21(10), 3426. doi:10.3390/ijms21103426.
87. Singh V., Chauhan G., Krishan P., & Shri R. (2017). Allium schoenoprasum L.: a review of phytochemistry, pharmacology and future directions. Natural Product Research, 32(18), 2202–2216. doi:10.1080/14786419.2017.13677830.
88. Sowbhagya H. B. (2013). Chemistry, Technology, and Nutraceutical Functions of Celery (Apium graveolensl: An Overview. Critical Reviews in Food Science and Nutrition, 54(3), 389–398. doi:10.1080/10408398.2011.586740.
89. Taylor DJR, Hamid SM, Andres AM, et al. (2020). Antiviral Effects of Menthol on Coxsackievirus B. Viruses. 2020;12(4):373. doi:10.3390/v12040373.
90. Tetali SD. (2019) Terpenes and isoprenoids: a wealth of compounds for global use. Planta. 249(1):1-8. doi:10.1007/s00425-018-3056-x.
91. Tsukamoto Y, Ikeda S, Uwai K, et al. (2018). Rosmarinic acid is a novel inhibitor for Hepatitis B virus replication targeting viral epsilon RNA-polymerase interaction. PLoS One. 2018;13(5):e0197664. doi:10.1371/journal.pone.0197664.
92. Ul Qamar MT, Alqahtani SM, Alamri MA, Chen LL. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants [published online ahead of print, 2020 Mar 26]. J Pharm Anal. 2020;10.1016/j.jpha.2020.03.009. doi:10.1016/j.jpha.2020.03.009.
94. Ventura-Martínez R., Rodríguez R., González-Trujano M. E., Ángeles-López G. E., Déciga-Campos M., & Gómez C. (2017). Spasmogenic and spasmolytic activities of Agastache mexicana ssp. mexicana and A. mexicana ssp. xolocotziana methanolic extracts on the guinea pig ileum. Journal of Ethnopharmacology, 196, 58–65. doi:10.1016/j.jep.2016.12.023.
95. Viveros-Valdez E, Rivas-Morales C, Carranza-Rosales P, Mendoza S, Schmeda-Hirschmann G. (2008). Free radical scavengers from the Mexican herbal tea "poleo" (Hedeoma drummondii). Z Naturforsch C J Biosci. 63(5-6):341-346. doi:10.1515/znc-2008-5-606.
96. Viveros-Valdez E, Rivas-Morales C, Oranday-Cardenas A, Verde-Star MJ, Carranza-Rosales P. (2011) Antimicrobial activity of Hedeoma drummondii against opportunistic pathogens. Pak J Biol Sci. 14(4):305-307. doi:10.3923/pjbs.2011.305.307.
97. Wang J.-H., Luan, F., He X.-D., Wang Y., & Li M.-X. (2018). Traditional uses and pharmacological properties of Clerodendrum phytochemicals. Journal of Traditional and Complementary Medicine, 8(1),24–38. doi:10.1016/j.jtcme.2017.04.001.
98. Wong G, He S, Siragam V, et al. (2017). Antiviral activity of quercetin-3-β-O-D-glucoside against Zika virus infection. Virol Sin. 32(6):545-547. doi:10.1007/s12250-017-4057-9.
99. Wu W, Li R, Li X, et al. (2015). Quercetin as an Antiviral Agent Inhibits Influenza a Virus (IAV) Entry. Viruses. 2015;8(1):6. doi:10.3390/v8010006.
100. Yan H, Ma L, Wang H, et al. (2019). Luteolin decreases the yield of influenza A virus in vitro by interfering with the coat protein I complex expression. J Nat Med. 73(3):487-496. doi:10.1007/s11418-019-01287-7.
101. Zielińska S, Matkowski A. (2014) Phytochemistry and bioactivity of aromatic and medicinal plants from the genus Agastache (Lamiaceae). Phytochemistry Reviews: Proceedings of the Phytochemical Society of Europe. 13:391-416. DOI: 10.1007/s11101-014-9349-1.
103. Zhou J., & Huang J. (2020). Current Findings Regarding Natural Components with Potential Anti-2019-nCoV Activity. Frontiers in cell and developmental biology, 8, 589. https://doi.org/10.3389/fcell.2020.00589.
Notas
Notas de autor
jose.viverosvld@uanl.edu.mx