Servicios
Descargas
Buscar
Idiomas
P. Completa
A different approach to b(αn,βn)-hypermetric spaces
Akbar Dehghan Nezhad; Nikola Mirkov; Vesna Todorčević;
Akbar Dehghan Nezhad; Nikola Mirkov; Vesna Todorčević; Stojan Radenović
A different approach to b(αn,βn)-hypermetric spaces
Иной подход к b(αn,βn)-гиперметрическим пространствам
Другачији приступ према b(αn,βn)-хиперметричким просторима
Vojnotehnicki glasnik/Military Technical Courier, vol. 70, no. 1, pp. 24-42, 2022
University of Defence
resúmenes
secciones
referencias
imágenes

Abstract: Introduction/purpose: The aim of this paper is to present the concept of b(αn,βn) -hypermetric spaces.

Methods: Conventional theoretical methods of functional analysis.

Results: This study presents the initial results on the topic of b(αn,βn)-hypermetric spaces. In the first part, we generalize an n-dimensional (n ≥ 2) hypermetric distance over an arbitrary non-empty set X. The b(αn,βn)-hyperdistance function is defined in any way we like, the only constraint being the simultaneous satisfaction of the three properties, viz, non-negativity and positive-definiteness, symmetry and (αn, βn)-triangle inequality. In the second part, we discuss the concept of (αn, βn)-completeness, with respect to this b(αn,βn)-hypermetric, and the fixed point theorem which plays an important role in applied mathematics in a variety of fields.

Conclusion: With proper generalisations, it is possible to formulate well-known results of classical metric spaces to the case of b(αn,βn)-hypermetric spaces.

Keywords: b(αn,βn)-hypermetric spaces, G-metric, fixed point.

Pезюме: Введение/цель: Целью данной статьи является представление концепции b(αn,βn)-гиперметрических пространств.

Методы: В статье применены конвенциональные теоретические методы функционального анализа.

Результаты: В статье представлены инициальные результаты в области b(αn,βn)-гиперметрических пространств. В первой части обобщается n-мерное (n ≥ 2) гиперметрическое расстояние на произвольном непустом множестве X. Функцию b(αn,βn)-гиперрастояния можно определить произвольно при наличии трех свойств: не отрицательность, положительная определенность, симметрия и (αn,βn)-неравенство треугольника. Во второй части статьи рассматривается концепция (αn,βn)-полноты по отношению к b(αn,βn)-гиперметрике и теореме о неподвижной точке, которая играет важную роль в прикладной математике в нескольких областях.

Выводы: С помощью соответствующих обобщений можно сформулировать известные результаты классических метрических пространств в случае b(αn,βn)-гиперметрических пространств.

Ключевые слова: b(αn,βn)-гиперметрические пространства, G-метрика, неподвижные точки.

Abstract: Увод/циљ: Циљ овог рада јесте да се представи концепт b(αn,βn)-хиперметричких простора.

Методе: Примењене су конвенционалне теоретске методе функционалне анализе.

Резултати: У раду су представљени иницијални резултати који се односе на b(αn,βn)-хиперметричке просторе. У првом делу генерализује се n-димензионално (n ≥ 2) хиперметричко растојање на произвољном непразном скупу X. Функција b(αn,βn)-хиперрастојања може се дефинисати на произвољан начин докле год су задовољене три особине: ненегативност, позитивна дефинитност, симетрија и (αn, βn)-неједнакост троугла. У другом делу рада разматрани су концепт (αn, βn)-комплетности у односу на b(αn,βn)-хиперметрику и теорема фиксне тачке, која има значајну улогу у примењеној математици на више поља.

Закључак: Одговарајућим генерализацијама могуће је формулисати познате резултате класичних метричких простора на случај b(αn,βn)-хиперметричких простора.

Keywords: b(αn,βn)-хиперметрички простори, G-метрика, фиксне тачке.

Carátula del artículo

Original scientific papers

A different approach to b(αn,βn)-hypermetric spaces

Иной подход к b(αn,βn)-гиперметрическим пространствам

Другачији приступ према b(αn,βn)-хиперметричким просторима

Akbar Dehghan Nezhad
Iran University of Science and Technology, Islamic Republic of Iran
Nikola Mirkov
University of Belgrade, Serbia
Vesna Todorčević
University of Belgrade, Serbia
Stojan Radenović
University of Belgrade, Serbia
Vojnotehnicki glasnik/Military Technical Courier, vol. 70, no. 1, pp. 24-42, 2022
University of Defence

Received: 08 December 2021

Revised document received: 04 January 2022

Accepted: 05 January 2022

Introduction

In human effort to describe the surrounding world, the concept of distance has long been fundamental. Our intuitive understanding of distance as an exact value may however differ from its mathematical definition and its properties. If one is to include the measurement error, encountered in real life attempt to measure the distance between two objects, the distance will be defined as an interval. This is, for example, where we may come across a set-valued distance function. This approach will in fact be our main motivation for presenting a generalized concept of the distance as a set-valued function in this paper.

The notion of 2-metric spaces, as a possible generalization of metric spaces, was introduced by Gähler (Gähler, 1963). The 2-metric d(x, y, z) is a function of three variables, and Gähler geometrically interpreted it as an area of triangle with vertices at x , y and z, respectively.

B. C. Dhage, in his PhD thesis (1992), introduced the notion of D-metric (Dhage et al, 2000) spaces that generalize metric spaces. However, most of the claims concerning the fundamental topological properties of D-metric spaces are incorrect, as shown in 2003 by Mustafa and Sims (Mustafa & Sims, 2003). This led them to introduce the notion of G-metric spaces (Mustafa & Sims, 2006), as a generalization of the metric spaces. In this type of spaces, a non-negative real number is assigned to every triplet of elements.

The G-metric spaces were generalized to universal metrics by Dehghan Nezhad et al, in a series of papers (Dehghan Nezhad & Aral, 2011; Dehghan Nezhad & Khajuee, 2013; Dehghan Nezhad et al, 2017; Dehghan Nezhad et al, 2021; Dehghan Nezhad & Mazaheri, 2010). The interpretation of the perimeter of a triangle is applied, but this time on G-metric spaces. Since then, many authors have obtained fixed point results for Gmetric spaces.

In an attempt to generalize the notion of a G-metric space to more than three variables, Khan first introduced the notion of a K-metric, and later the notion of a generalized n-metric space( for any n ≥ 2) (Khan, 2012, 2014), in 1975. He also proved the common fixed point theorem for such spaces.

Bakhtin (Bakhtin, 1989) and Czerwik (Czerwik, 1993) generalized the structure of metric space by weakening the triangle inequality and called it the b-metric space. In 2017, Kamran et al. (Kamran et al, 2017) introduced the concept of extended b-metric space by further weakening the triangle inequality. For more details also see (Agarwal et al, 2015; Debnath et al, 2021; Kirk & Shahzad, 2014; Todorčević, 2019). Also, for a broader perspective on extended b-metric spaces, dislocated b-metric spaces, rectangular b-metric spaces, b-metric like spaces, and applications see (Younis et al, 2021a,b,c; Younis & Singh, 2021).

The main purpose of this paper is a generalization of universal metric spaces into b(αn,βn) -hypermetric spaces of the n-dimension.

REMARK 1. An ordered ring is a (usually commutative) ring R with a total order ⪯ such that for all a, b, and c in R:

i) if a ⪯ b, then a + c ⪯ b + c

ii) if 0 ⪯ a and 0 ⪯ b, then 0 ⪯ a · b.

We denote R+ a set of non-negative elements of R, namely R+ := {g ∈ R : 0 ⪯ g}.

The concept of a b-metric space is initiated by Bakhtin (Bakhtin, 1989) and later used by Czerwick (Czerwik, 1993).

DEFINITION 1. (Czerwik, 1993) Let X be a non-empty set and db : X×X −→ [0, +∞) be a function satisfying the following conditions:

(b1) db(x, y) = 0 if and only if x = y

(b2) db(x, y) = db(y, x), for all x, y, z ∈ X,

(b3) db(x, y) ≤ s(db(x, z) + db(z, y)) for all x, y, z ∈ X, where s ≧ 1.

The function db is called a b-metric and the pair (X, db) is called a bmetric space.

EXAMPLE 1. (Berinde, 1993) Let X = lp[0, 1] be the space of all real functions ϕ(t) with t ∈ [0, 1] such that with 0 < p < 1. Define db : X × X −→ [0, +∞) as:

Therefore, (X, db) is a b-metric space with .

REMARK 2. (Czerwik, 1993) The class of the b-metric space is larger than the class of the metric space. When s = 1, the concept of the b-metric space coincides with the concept of the metric space.

In the following we recall the definition of the extended b-metric space.

DEFINITION 2. (Kamran et al, 2017) Let X be a non-empty set and r : X × X −→ [1, +∞). A function dr : X × X −→ [0, +∞) is called an extended b-metric if for all x, y, z ∈ X it satisfies the following conditions:

(b1) dr(x, y) = 0 if and only if x = y,

(b2) dr(x, y) = dr(y, x),

(b3) dr(x, y) ≤ r(x, y)(dr(x, z) + dr(z, y)).

The pair (X, dr) is called the extended b-metric space.

Main results

The goal of this section is to describe a few properties and the results of the b(αn,βn)-hypermetric spaces of the dimension n.

b(αn,βn) -hypermetric spaces of the dimension n

Now we first recall and introduce some notation. For n ≥ 2, let Xn denote the n-times Cartesian product and R be an ordered ring. Let P(R) denote the family of all non-empty subsets of R. We begin with the following definition.

DEFINITION 3. Let X be a non-empty set and αn, βn : Xn −→ [1, +∞). Let be a function that satisfies the following conditions:

Let Ai be the subsets of X,(i = 1, . . . , n), for any D, D′ ∈ P*(R+) and α ∈ R+. We define

We shall use the following abbreviated notation: The function is called an ordered b(αn,βn)-hypermetric ring of the dimension n, or more specifically a b(αn,βn)-hypermetric on X. The pair is called an b(αn,βn)-hypermetric space.

For example, we can place , where = {0, 1, 2, . . . } and . In the sequel, for simplicity we assume that . The following useful properties of a bn-hypermetric are easily derived from the axioms.

REMARK 3. If αn(x1, x2, . . . , xn) = βn(x1, x2, . . . , xn) = c for c ≥ 1 and n = 1, then we obtain the definition of a b-metric space (Czerwik, 1993). It is clear that for c = 1, this b-metric becomes a usual metric.

PROPOSITION 1. (Example) Let X = [0, 1] and α2, β2 : X × X −→ [1, +∞), with . Define

with,

and also assume A + B = A ∪ B, for all . Then is a b(α2,β2) -hypermetric space.

Proof. It is sufficient to show that is satisfied in all properties (U1),(U2), . . . ,(U5) . The proofs of (U1), . . . ,(U4), follow immediately from the definition of . We only need to show that is satisfied in

We distinguish the following cases:

Hence is a b(α2,β2) -hypermetric space.

PROPOSITION 2. Let be a -hypermetric space, then for any x1, ..., xn, a ∈ X it follows that:

PROPOSITION 3. Let be a -hypermetric space, then or all x1, ..., xn ∈ X.

Proof. By condition (U4) of the definition of a b(αn,βn)-hypermetric space, we have

PROPOSITION 4. Every b(αn,βn)-hypermetric space defines a b(α2,β2)-hypermetric space as follows:

Proof. Note that (U1), . . . ,(U4) trivially hold. We only need to show that is satisfied in

By setting

and

This completes the proof.

PROPOSITION 5. Let e be an arbitrary positive real number, and (X, d) be a metric space. We define an induced b(α2,β2)-hypermetric

Then is a b(α2,β2)-hypermetric spac

Quotient b(αn,βn)-hypermetric space

Let be a b(αn,βn)-hypermetric space and be a partition of X. For each point p ∈ X, we denote a point in containing p, and we denote the equivalent relation induced by the relation by .

DEFINITION 4. Let e a b(αn,βn) hypermetric space. Let p1, . . . , pn ∈ X, and consider . A quotient b(αn,βn)-hypermetric of points of induced by is the function

given by

PROPOSITION 6. The quotient b(αn,βn)-hypermetric induced by is well defined and is a b(αn,βn)-hypermetric on X

Proof. is satisfied in all properties (U1), till (U4),

Let be a b(αn,βn)-hypermetric space of a dimension n > 2. For any arbitrary a in X, define the function by . Then we have the following result.

PROPOSITION 7. The function efine a -hypermetric on X.

Proof. We will verify that satisfies the five properties of a -hypermetric.

PROPOSITION 8. Let Π : X → Y be an injection from a set X to a set Y. If is a b(αn,βn)-hypermetric on the set Y. Then , given by the formula for all x1, . . . , xn ∈ X, is a b(αn,βn)-hypermetric on the set X.

PROPOSITION 9. Let be any b(αn,βn)-hypermetric space and . Then is also a b(αn,βn)-hypermetric space where

So, on the same X many intances of the b(αn,βn)-hypermetric can be defined, as a result of which the same set X is endowed with different metric structures. Another structure in the next proposition is useful for scaling the b(αn,βn)-hypermetric, so we need the following explanation.

For any non-empty subset A of , and λ ∈ we define a set λ · A to be λ · A := {λ · a | a ∈ A}.

PROPOSITION 10. Let e any b(αn,βn)-hypermetric space. Let Λ be any positive real number. We define . Then is also a b(αn,βn)-hypermetric space.

A sequence {xm} in a b(αn,βn)-hypermetric space is said to converge to a point s in X, if for any ϵ > 0 there exists a natural number N such that for every m1, . . . , mn−1 ≥ N.

then we shall write

We shall say that a sequence {xm} has a cluster point x if there exists a subsequence {xmk } of {xm} that converges to x.

PROPOSITION 11. Let and be two b(αn,βn)-hypermetric spaces. Then a function T : X → X′ is b(αn,βn) -continuous at a point x ∈ X, if and only if it is b(αn,βn)-sequentially continuous at x; that is, whenever sequence {xm} is b(αn,βn) -convergent to x one has {T(xm)} is U(αn,βn) -convergent to T(x).

DEFINITION 5. Let be a b(αn,βn) -hypermetric space, and A ⊆ X. The set A is b(αn,βn) -compact if for every b(αn,βn) -sequence {xm} in A, there exists a subsequence {xmk } of {xm} such that b(αn,βn) -convergences to some x0 ∈ A.

PROPOSITION 12. Let and be two b(αn,βn)-hypermetric spaces and T : X → X′ a b(αn,βn)-continuous function on X. If X is b(αn,βn)-compact, then T(X) is b(αn,βn)-compact.

DEFINITION 6. Let be a b(αn,βn) -hypermetric space, then for x0 ∈ X, r > 0, the b(αn,βn) -hyperball with the centre x0 and the radius r is

PROPOSITION 13. Let be a b(αn,βn) -hypermetric space, then for x0 ∈ X, r > 0,

PROPOSITION 14. The set of all -balls, , forms a basis for a topology on X.

DEFINITION 7. Let be a b(αn,βn)-hypermetric space. The sequence {xn} ⊆ X is b(αn,βn)-convergent to x if it b(αn,βn)-converges to x in the b(αn,βn)-hypermetric topology, .

PROPOSITION 15. Let be a b(αn,βn)-hypermetric space. Then for a sequence {xm} ⊆ X, and a point x ∈ X the following are equivalent:

DEFINITION 8. Let , be universal hypermetric spaces of the dimensions n and m respectively; a function T : X −→ Y is b(αn,βn),(αm,βm)-continuous at the point x0 ∈ X, if , for all r > 0.

We say f is b(αn,βn),(αm,βm)-continuous if it is b(αn,βn),(αm,βm)-continuous at all points of X; that is, continuous as a function from X with the -topology to Y with the -topology.

In the sequel, for simplicity we have assumed that n = m. Since b(αn,βn)-hypermetric topologies are metric topologies, we have:

DEFINITION 9. Let and be two b(αn,βn)-hypermetric spaces and be a function. The function f is called b(αn,βn)-continuous at a point a ∈ X if and only if, for given ϵ > 0, there exists δ > 0 such that x1, . . . , xn−1 ∈ X and the subset relation implies that .

A function f is b(αn,βn) -continuous on X if and only if it is b(αn,βn)-continuous at all a ∈ X.

PROPOSITION 16. Let , be b(αn,βn)-hypermetric spaces, a function T : X −→ Y is b(αn,βn)-continuous at point x ∈ X if and only if it is b(αn,βn)-sequentially continuous at x; that is, whenever the {xn} is b(αn,βn)-convergent to x we have (T(xn)) is b(αn,βn)-convergent to T(x).

PROPOSITION 17. Let be a b(αn,βn)-hypermetric space. Then the function

is jointly b(αn,βn) -continuous in all n of its variables.

DEFINITION 10. A map T : X −→ Y between b(αn,βn)-hypermetric spaces and is an iso-hypermetric when for all x1, . . . , xn ∈ X. If the iso-b(αn,βn)-hypermetric is injective, we call it iso-b(αn,βn)-hypermetric embedding. A bijective iso-b(αn,βn)-hypermetric is called a b(αn,βn)-hypermetric isomorphism.

Fixed Point Theorem in b(αn,βn)-hypermetric spaces

In a b(αn,βn-hypermetric space, the concepts of basic topological notions, such as: b(αn,βn)-Cauchy sequence, b(αn,βn)-convergent sequence and b(αn,βn)-complete b(αn,βn)-hypermetric space can be easily adopted as shown below. We discuss about the concept of b(αn,βn)-completeness of b(αn,βn)-hypermetric spaces.

DEFINITION 11. Let be a b(αn,βn)-hypermetric space, then a sequence {xm} ⊆ X is called b(αn,βn)-Cauchy if for every ε > 0, there exists

The next proposition follows directly from the definitions.

PROPOSITION 18. In a b(αn,βn)-hypermetric space, , the following are equivalent

COROLLARY 1. (i) Every b(αn,βn)-convergent sequence in a b(αn,βn)- hypermetric space is b(αn,βn)-Cauchy. (ii) If a b(αn,βn)-Cauchy sequence in a b(αn,βn)-hypermetric space contains a b(αn,βn)-convergent subsequence, then the sequence itself is b(αn,βn)-convergent.

DEFINITION 12. A b(αn,βn)-hypermetric space is called b(αn,βn)-complete if every b(αn,βn)-Cauchy sequence in is b(αn,βn)-convergent in .

PROPOSITION 19. A b(αn,βn)-hypermetric space is b(αn,βn)-complete if and only if is a complete metric space.

DEFINITION 13. Let and be two b(αn,βn)-hypermetric spaces. A function f : X −→ Y is called a b(αn,βn)-contraction if there exists a constant k ∈ [0, 1) such that for all x1, . . . , xn ∈ X.

It follows that f is b(αn,βn)-continuous because; ⊆ [0, δ) with .

THEOREM 1. Let be a b(αn,βn) -complete space and let T : X → X be a b(αn,βn)-contraction map. Then T has a unique fixed point T(x) = x.

Proof. We consider xm+1 = T(xm), with x0 being any point in X. By repeated use of the (αn, βn)-rectangle inequality and the application of the contraction property, we obtain

for all m, s1 which m < s1 and k ∈ [0, 1). It follows from the above that

where Γ1 = αn(xm, xs1 , . . . , xs1 ),

and

Then we have

since

For m ≤ s1 ≤ s2 and (U5) it implies that

now taking a limit as m, s1, s2 → +∞, we get

Now for m ≤ s1 ≤ s2 ≤ . . . ≤ sn−1, we will have

then {xm} is a Cauchy sequence. By completeness of , there exists a ∈ X such that {xn} is b(αn,βn)-convergent to a. It follows that the limit xm is a fixed point of T following the b(αn,βn)-continuity of T, and

Finally, if a and b are two fixed points, then

We conclude from k < 1 that . Consequently, a = b and the fixed point is unique.

Conclusion

The objective of this paper is to bring about the study of b(αn,βn)-hypermetric spaces and to introduce certain fixed point results of mappings in the setting of b(αn,βn)-hypermetric spaces. This study presents the initial results in this topic and more refined results can be derived in the near future. Also in the future, we will consider engineering applications of the considered topic.

Supplementary material
References
Agarwal, R.P., Karapinar, E, O’Regan, D. & Roldán-López-de-Hierro, A.F. 2015. Fixed Point Theory in Metric Type Spaces. Springer International Publishing Switzerland. Available at: https://doi.org/10.1007/978-3-319-24082-4. ISBN: 978-3-319-24082-4.
Bakhtin, I. 1989. The contraction mapping principle in quasimetric spaces. Func. An., Gos. Ped. Inst. Unianowsk, 30, pp.26-37.
Berinde, V. 1993. Generalized contractions in quasimetric spaces. Seminar on Fixed Point Theory, 3(9), pp.3-9 [online]. Available at: https://www.researchgate .net/profile/Vasile-Berinde/publication/267016246_Generalized_contractions_i n_quasimetric_spaces/links/559a0dd908ae5d8f39364ab8/Generalized-contracti ons-in-quasimetric-spaces.pdf [Accessed: 1 December 2021].
Czerwik, S. 1993. Contraction mappings in b-metric spaces. Acta Mathematica et Informatica Universitatis Ostraviensis, 1, pp.5-11 [online]. Available at: https://dml.cz/handle/10338.dmlcz/120469 [Accessed: 1 December 2021].
Debnath, P., Konwar, N. & Radenović, S. 2021. Metric Fixed Point Theory: Applications in Science, Engineering and Behavioural Sciences. Springer Verlag, Singapore. ISBN-13: 978-9811648953.
Dehghan Nezhad, A. & Aral, Z. 2011. The topology of GB-metric spaces. International Scholarly Research Notices, art.ID:523453.Available at: https://doi.org/10.5402/2011/523453.
Dehghan Nezhad, A., Forough, A., Mirkov, N. & Radenović, S. 2021. A new version of Un-hypermetric space results. Vojnotehnički glasnik/Military Technical Courier, 69(3), pp.562-577. Available at: https://doi.org/10.5937/vojtehg69-32197.
Dehghan Nezhad, A. & Khajuee, N. 2013. Some new results on complete Un-metric space. Journal of Nonlinear Sciences and Applications, 6(3), pp.216-226. Available at: http://dx.doi.org/10.22436/jnsa.006.03.07.
Dehghan Nezhad, A., Khajuee, N. & Mustafa, Z. 2017. Some new results on Universal metric spaces. Thai Journal of Mathematics, 15(2), pp.429-449 [online]. Available at: http://thaijmath.in.cmu.ac.th/index.php/thaijmath/article/view/623 [Accessed: 1 December 2021].
Dehghan Nezhad, A. & Mazaheri, H. 2010. New results in G-best approximation in G-metric spaces. Ukrainian Mathematical Journal, 62(4), pp.648-654. Available at: https://doi.org/10.1007/s11253-010-0377-8.
Dhage, B.C., Pathan, A.M. & Rhoades, B.E. 2000. A general existence principle for fixed point theorems in d-metric spaces. International Journal of Mathematics and Mathematical Sciences, 23(7), art.ID:695952, pp.441-448. Available at: https://doi.org/10.1155/S0161171200001587.
Gähler, S. 1963. 2-metrische Räume und ihre topologische Struktur. Mathematische Nachrichten, 26(1-4), pp.115-148. Available at: https://doi.org/10.1002/mana.19630260109.
Kamran, T., Samreen, M. & UL Ain, Q. 2017. A Generalization of b-Metric Space and Some Fixed Point Theorems. Mathematics, 5(2), art.number:19, pp.1- 7. Available at: https://doi.org/10.3390/math5020019.
Khan, K.A. 2012. On the possibitity of n-topological spaces. International Journal of Mathematical Archive, 3(7), pp.2520-2523 [online]. Available at: http://www.ijma.info/index.php/ijma/article/view/1442 [Accessed: 1 December 2021].
Khan, K.A. 2014. Generalized n-metric spaces and fixed point theorems. Journal of Nonlinear and Convex Analysis, 15(6), pp.1221-1229 [online]. Available at: http://www.yokohamapublishers.jp/online2/jncav15.html [Accessed: 1 December 2021].
Kirk, W. & Shahzad, N. 2014. Fixed Point Theory in Distance Spaces. Springer International Publishing Switzerland. Available at: https://doi.org/10.1007/978-3-319-10927-5. ISBN: 978-3-319-10927-5.
Mustafa, Z. & Sims, B. 2003. Some remarks concerning D-metric spaces. In: Proceeding of the International Conferences on Fixed Point Theory and Applications, Valencia (Spain), pp.189-198, July 13-18. Available at: https://carma.edu.au/brailey/Research_papers/Some%20Remarks%20Concerning%20D%20-%20Metric%20Spaces.pdf [Accessed: 10 May 2021].
Mustafa, Z. & Sims, B. 2006. A new approach to generalized metric spaces. Journal of Nonlinear Convex Analysis, 7(2), pp.289-297 [online]. Available at: https://carma.edu.au/brailey/Research_papers/A%20new%20Approach%20to%20Generalized%20Metric%20Spaces.pdf [Accessed: 10 May 2021].
Todorčević, V. 2019. Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics. Springer Nature Switzerland AG. Available at: https://doi.org/10.1007/978-3-030-22591-9. ISBN: 978-3-030-22591-9.
Younis, M., Singh, D., Altun, I. & Chauhan, V. 2021a. Graphical structure of ex- tended b-metric spaces: an application to the transverse oscillations of a homoge- neous bar. International Journal of Nonlinear Sciences and Numerical Simulation, 2021, art.ID:000010151520200126. Available at: https://doi.org/10.1515/ijnsns-2020-0126.
Younis, M., Singh, D. & Abdou, A.N.A. 2021b. A fixed point approach for tuning circuit problem in dislocated b-metric spaces. Mathematical Methods in the Applied Sciences, 2021, pp.1-20. Available at: https://doi.org/10.1002/mma.7922.
Younis, M., Singh, D. & Shi, L. 2021c. Revisiting graphical rectangular b-metric spaces. Asian-European Journal of Mathematics, 2021, art.number:2250072. Available at: https://doi.org/10.1142/S1793557122500723.
Younis, M. & Singh, D. 2021. On the existence of the solution of Hammerstein integral equations and fractional differential equations. Journal of Applied Mathematics and Computing, 2021. Available at: https://doi.org/10.1007/s12190-021-01558-1.
Notes
Author notes

nmirkov@vin.bg.ac.rs

Buscar:
Contexto
Descargar
Todas
Imágenes
Scientific article viewer generated from XML JATS4R by Redalyc