Servicios
Descargas
Buscar
Idiomas
P. Completa
Existence of a solution for a general order boundary value problem using the Leray-Schauder fixed point theorem
Nicola Fabiano; Vahid Parvaneh
Nicola Fabiano; Vahid Parvaneh
Existence of a solution for a general order boundary value problem using the Leray-Schauder fixed point theorem
Существование решения краевой задачи общего порядка с использованием теоремы Лере-Шаудера о неподвижной точке
Решење проблема граничне вредности општег реда које користи теорему непокретне тачке типа Leray-Schauder
Vojnotehnicki glasnik/Military Technical Courier, vol. 69, no. 2, pp. 323-337, 2021
University of Defence
resúmenes
secciones
referencias
imágenes

Abstract: Introduction/purpose: This paper illustrates the existence of a generic Green’s function for a boundary value problem of arbitrary order that appears in many phenomena of heat convection, e.g. in the atmosphere, in the oceans, and on the Sun’s surface.

Methods: A fixed point theorem in the Leray–Schauder form has been used to establish the existence of a fixed point in the problem.

Results: The existence of a solution has been shown for an arbitrary order of the problem. Some practical examples are proposed.

Conclusions: The boundary problem has a solution for an arbitrary order n.

Keywords: fixed point, boundary value problem, Leray–Schauder fixed point theorem.

Pезюме: Введение/цель: В данной статье приведено существование производящей функции Грина для решения краевой задачи произвольного порядка, которая встречается во многих явлениях тепловой конвекции как в атмосфере, в океанах, так и на поверхности Солнца.

Методы: В статье применена теорема неподвижной точки Лере - Шаудера, с целью подтверждения существования неподвижной точки в данной задаче.

Результаты: Доказано существование решения по произвольному порядку и предлагаются некоторые практические примеры.

Выводы: Краевая задача имеет решение по произвольному N-му порядку.

Ключевые слова: неподвижная точка, краевая задача, теорема Лере – Шаудера о неподвижной точке.

Abstract: Увод/циљ: У раду се приказује постојање генеричке Гринове функције за проблем граничне вредности произвољног реда који се јавља код многих појава конвекције топлоте у, на пример, атмосфери, океанима и на површини Сунца.

Методе: Користи се теорема непокретне тачке типа Leray-Schauder како би се утврдило постојање непокретне тачке у наведеном проблему.

Резултати: Приказано је решење за произвољан ред проблема. Предложени су неки практични примери.

Закључак: Гранични проблем има решење за произвољни n-ти ред.

Keywords: непокретна тачка, проблем граничне вредности, теорема непокретне тачке типа Leray-Schauder.

Carátula del artículo

Original scientific papers

Existence of a solution for a general order boundary value problem using the Leray-Schauder fixed point theorem

Существование решения краевой задачи общего порядка с использованием теоремы Лере-Шаудера о неподвижной точке

Решење проблема граничне вредности општег реда које користи теорему непокретне тачке типа Leray-Schauder

Nicola Fabianoa
Independent researcher, Italy
Vahid Parvanehb
Islamic Azad University, Islamic Republic of Iran
Vojnotehnicki glasnik/Military Technical Courier, vol. 69, no. 2, pp. 323-337, 2021
University of Defence

Received: 03 December 2020

Revised document received: 30 January 2021

Accepted: 01 February 2021

The problem

We consider the generic differential equation of order 2n, n ≥ 1, with the boundary conditions:

(1)

This kind of equations occurs, for instance, when studying the problem of the beginning of thermal instability in horizontal layers of fluid heated from below. This kind of phenomena could be observed in convection patterns in several situations, for instance, in the atmosphere, in the oceans, when considering the coupling with a strong electromagnetic field, or on the Sun’s surface (Chandrasekhar, 1961). This work will extend the results of (Fabiano et al, 2020), (Ahmad & Ntouyas, 2012) and (Ma, 2000) to an equation of a generic order 2n.

Introduce the Green’s functions Gl(x, s, n) and Gr(x, s, n) of problem (1) where Gl(x, s, n) is defined for 0 ≤ x < s ≤ 1 and Gr(x, s, n) is defined for 0 ≤ s < x ≤ 1, (x, s) → Gl,r(x, s, n); (x, s) ∈ [0, 1] × [0, 1], Gl,r ∈ C2n over such that solve the following equation:

(2)

The complete Green’s function is thus obtained by the linear combination of the above two,

(3)

θ is the Heaviside step function. Given the inhomogeneous problem solved by x → f(x), x ∈ [0, 1], f ∈ C over,

(4)

the Green’s function provides solution to (4) in the integral form

(5)

The functions Gl,r(x, s, n) are multivariate polynomials in two variables x and s of the order 2n − 1 to be sought in the form

(6)

and

(7)

where the coefficient c(k, n) is clearly given in combinatoric terms, k ≤ n

Imposing boundary conditions (4) to the Green’s function, we obtain that

(8)

and

(9)

So, we could infer the following results.

For Gl(x, s, n) the powers of x range from n to 2n − 1, while for the powers of s we have the range from 0 to n − 1. For Gr(x, s, n) we find the same situation when swapping s with x. Therefore, the coefficient c(k, n) has to be symmetric under this exchange.

We conclude that the coefficient c(k, n) of both functions Gl,r(x, s, n) is given by:

(10)

Notice that |c(k, n)| < 1 for all k, n. This observation will be useful in the sequel.

The resulting Green’s function G(x, s, n) and its x derivatives are continuous up to order 2n−2, and present the discontinuity in −1 at order 2n−1, because of the Dirac’s δ function.

The above discussion concludes the proof of the following lemma:

Lemma 1. Let x → y(x), x ∈ [0, 1] be a function of class C2n in , let (x, y, z) → χ(x, y, z); x ∈ [0, 1],(y, z) ∈ 2 be a function of class C in and let χ be a function of class C in . Then the Green’s function of the problem (4) obeying to equation (2) is given by formulas (3), (6), (7), and (10).

Another property of these Green’s functions is their homogeneity. In fact, under the scaling transformation (x, s) → (αx, αs) for α > 0 one has

that is, Gl,r(x, s, n) is homogeneous of degree 2n − 1.

Solution

In this section, we will provide the main result of this work: the solution of the problem in (1) for a generic n.

Define the integral operator as follows:

(11)

According to Lemma 1, this operator provides a solution of problem (4) for a generic order n provided that it has a fixed point.

We shall make use of the following theorem of (Bekri & Benaicha, 2018) and (Shanmugam et al, 2019), the Leray–Schauder form of the fixed point theorem appears in (Isac, 2006), (Deimling, 1985) and (Zvyagin & Baranovskii, 2010):

Theorem 1. Let (E, || · ||) be a Banach space, let U ⊂ E be an open bounded subset for which 0 ∈ U and let be a completely continuous operator. Then only one of the following possibilities is true:

1. possesses a fixed point

2. there exist an element and a real number λ > 1 such that x = λx.

Therefore, in order to establish the existence of a solution it is necessary to prove that our integral operator possesses a fixed point. The following two theorems are devoted to this problem.

Theorem 2. Let x → y(x), x ∈ [0, 1] be a function of class C2n in , let (x, y, z) → χ(x, y, z); x ∈ [0, 1],(y, z) ∈ 2 be a function of the class C in and |χ(x, 0, 0)| 0. Suppose that there exist three nonnegative functions x → (u(x), v(x), w(x)) ∈ L1 [0, 1] such that

Define the kernel

and suppose that

Then the problem (1) has at least one nontrivial solution x → ξ(x), x ∈ [0, 1] of class C2n in .

Proof. Define the constant

From our hypothesis A < 1 and w(s) ≥ 0. Observe that for all s ∈ [0, 1]. As |χ(x, y, z)| ≤ u(x)|y| + v(x)|z| + w(x), for all x ∈ [0, 1] and (y, z) ∈ 2 and according to the fact that χ(x, 0, 0) 0 for all x ∈ [0, 1], there exist an interval [a, b] ⊂ [0, 1] such that maxx∈[a,b] |χ(x, 0, 0)| > 0. Therefore, |χ(x, 0, 0)| > 0 and also w(x) > 0, for some x ∈ [a, b] ⊂ [0, 1]. This implies the inequality We conclude that A < 1 and B > 0.

Define L := B(1 − A)−1 which is positive by construction, and the set U = {y ∈ E : ||y|| < L}. Assume that y ∈ ∂U and λ > 1. As y = λy, then λL = λ||y|| = ||y|| = maxx∈[0,1] |(y)(x)|. Adopting the simplified notation dµ = |χ(s, y(s), y''(s)|ds we have:

(12a)

(12b)

from our hypothesis, |χ(x, 0, 0)| has an upper bound for all x ∈ [0, 1]. So, one has

(13)

Using equation (12ab), we obtain the bound λL ≤ AL + B which implies that

which contradicts the hypothesis for which λ > 1, that is point (2) of Theorem 2.1 is ruled out, while point (1) is fulfilled. Therefore, we conclude that there exists at least a nontrivial solution ξ(x) of problem (1).

Up to this point, we have established the existence of a solution for the boundary value problem. In the following theorem, we show some parameter dependent bounds that actually lead to the existence of a solution.

Theorem 3. Let (x, y, z) → χ(x, y, z); x ∈ [0, 1],(y, z) ∈ 2 , χ is of class C in and |χ(x, 0, 0)| 0. Suppose that there exist three nonnegative functions x → (u(x), v(x), w(x)) ∈ L-1 [0, 1] such that

Theorem 3. Let .x, y, z) ›→ .(x, y, z); . ∈ [0, 1], (y, z) ∈ R2, χ is of the class C in . and |.(x, 0, 0)| ƒ= 0. Suppose that there exist three nonnegative functions x ›→ (.(.), v(.), w(.)) ∈ ..[0, 1] such that

Define

and suppose that either one of the following conditions holds:

1. There exists a constant > −2 such that

where

2. There exists a constant m > −1 such that

where

3. here exists a constant a > 1 such that

and

Then problem (1) has at least one nontrivial solution x → ξ(x), x ∈ [0, 1] of class C2n in .

Proof. In order to prove this theorem, one has to show that the integral operator (11) has A < 1, A being defined in Theorem 2.

(14)

and when > −2, one has

For point 2, we have

(15)

and when m > −1, one has

In the case of point 3, we make use of Hölder inequality for which , whenever f and g are measurable functions on the domain S and 1/a + 1/b = 1. We have

(16)

Examples
Example 1

Consider the problem for a generic n ≥ 1

(17)

This problem satisfies all requirements of Theorem 2. In fact, one has

together with

For a generic α > 0, following Theorem 3, hypothesis 1, we have that (u(x), v(x), w(x)) ∈ L1[0, 1] are nonnegative functions. Moreover,

for all x ∈ [0, 1] and for all (y, z) ∈ 2 .

Setting α = one has to consider the inequality

(18)

for all x ∈ [0, 1]. In the parameter space (α, , n), the above inequality is satisfied, for instance, for the case α = = n, whenever

(19)

In this case, the existence of a nontrivial solution ξ(x) ∈ C2n [0, 1] is guaranteed for problem (17).

Example 2

Consider the problem for a generic n ≥ 1

(20)

This problem satisfies all requirements of Theorem 2. In fact, one has

together with

For a generic α > 0, from hypothesis 2 of Theorem 3, we have that (u(x), v(x), w(x)) ∈ L1[0, 1] are nonnegative functions. Moreover,

for all x ∈ [0, 1] and for all (y, z) ∈ 2.

Setting α = m, one has to investigate the following inequality:

(21)

for all x ∈ [0, 1]. In the parameter space (α, m, n), the above inequality is satisfied, for instance, for the case α = m = n, whenever

(22)

In this case, the existence of a nontrivial solution ξ(x) ∈ C2n[0, 1] is guaranteed for problem (20).

Example 3

Consider the problem for a generic n ≥ 1

(23)

This problem satisfies all requirements of Theorem 2. In this example,

together with

For a generic α > 0, following assumption 3 of Theorem 3, we have that (u(x), v(x), w(x)) ∈ L1 [0, 1] are nonnegative functions. Moreover

for all x ∈ [0, 1] and (y, z) ∈ 2.

We have

that leads to the relation

(24)

Setting a = b = 2, inequality (24) becomes:

(25)

where

is the Hurwitz zeta function, defined for s 1 and . In our problem, it is always well defined since q > 0 and s = 1/2.

In the parameter space (α, n), setting α = n, for instance one obtains that inequality (25) is satisfied whenever

(26)

Letting α = n2 we obtain that inequality (25) is satisfied whenever

(27)

For the above choice of parameters, the existence of a nontrivial solution ξ(x) ∈ C2n[0, 1] is guaranteed for problem (23).

Supplementary material
Additional information

FIELD: Mathematics

ARTICLE TYPE: Original scientific paper

References
Ahmad, B. & Ntouyas, S.K. 2012. A study of higher-order nonlinear ordinary differential equations with four-point nonlocal integral boundary conditions. Journal of Applied Mathematics and Computing, 39, pp.97-108. Available at: https://doi.org/10.1007/s12190-011-0513-0.
Bekri Z. & Benaicha, S. 2018. Nontrivial solution of a nonlinear sixth-order boundary value problem. Waves, Wavelets and Fractals, 4(1), pp.10-18. Available at: https://doi.org/10.1515/wwfaa-2018-0002.
Chandrasekhar, S. 1961. Hydrodynamic and Hydromagnetic Stability. New York, NY: Dover. Online ISBN: 9780486319209.
Deimling, K. 1985. Nonlinear Functional Analysis. Berlin, Heidelberg: Springer. Available at: https://doi.org/10.1007/978-3-662-00547-7. Online ISBN: 978-3-662- 00547-7.
Fabiano, N., Nikolić, N., Shanmugam, T., Radenović, S. & Čitaković, N. 2020. Tenth order boundary value problem solution existence by fixed point theorem. Journal of Inequalities and Applications, art.number:166. Available at: https://doi.org/10.1186/s13660-020-02429-2.
Isac, G. 2006. Leray–Schauder Type Alternatives, Complementarity Problems and Variational Inequalities. Boston, MA: Springer. Available at: https://doi.org/10.1007/0-387-32900-5. Online ISBN: 978-0-387-32900-0.
Ma, R. 2000. Existence and uniqueness theorems for some fourth-order nonlinear boundary value problems. International Journal of Applied Mathematics and Computer Science, 23, art.ID:739631. Available at: https://doi.org/10.1155/S0161171200003057.
Shanmugam, T., Muthiah, M. & Radenović, S. 2019. Existence of Positive So- lution for the Eighth-Order Boundary Value Problem Using Classical Version of Leray–Schauder Alternative Fixed Point Theorem. Axioms, 8(4), art.number:129. Available at: https://doi.org/10.3390/axioms8040129.
Zvyagin, V.G. & Baranovskii, E.S. 2010. Topological degree of condensing multi-valued perturbations of the (S)+-class maps and its applications. Journal of Mathematical Sciences, 170, pp.405-422. Available at: https://doi.org/10.1007/s10958-010-0094-8.
Notes
Author notes
a Independent researcher, Rome, Italy
b Islamic Azad University, Department of Mathematics, Gilan-E-Gharb Branch, Gilan-E-Gharb, Islamic Republic of Iran

nicola.fabiano@gmail.com

Buscar:
Contexto
Descargar
Todas
Imágenes
Scientific article viewer generated from XML JATS4R by Redalyc